Skip to main content
Mathematics LibreTexts

2.3.1: Exercises 2.3

  • Page ID
    63330
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Terms and Concepts

    Exercise \(\PageIndex{1}\)

    What does it mean if \(x=2\) is in the domain of \(f(x)\)?

    Answer

    It means that \(2\) is a valid input for the function \(f\).

    Exercise \(\PageIndex{2}\)

    What does it mean if \(x=4\) is not in the domain of \(f(x)\)?

    Answer

    It means that \(4\) is not a valid input for the function \(f\).

    Exercise \(\PageIndex{3}\)

    T/F: The domain of \(f(g(x))\) depends only on the domain of \(g(x)\). Explain.

    Answer

    False; it depends on both the domain of \(f(x)\) and the domain of \(g(x)\).

    Exercise \(\PageIndex{4}\)

    T/F: The domain of \(\frac{f(x)}{g(x)}\) depends only on where \(g(x)=0\). Explain.

    Answer

    False; if \(g(x)=0\), \(\frac{f(x)}{g(x)}\) is not defined, but \(f(x)\) may not be defined everywhere

    Problems

    In exercises \(\PageIndex{5}\) - \(\PageIndex{7}\), express the domain of the given function using interval notation.

    Exercise \(\PageIndex{5}\)

    \(x\leq 4\) and \(x>-6\)

    Answer

    \(x \in (-6,4]\)

    Exercise \(\PageIndex{6}\)

    \(-3\leq x \leq 10\)

    Answer

    \(x \in [-3,10]\)

    Exercise \(\PageIndex{7}\)

    \(x > 4\) or \(-2>x\)

    Answer

    \(x \in (-\infty,-2)\cup (4,\infty)\)

    In exercises \(\PageIndex{8}\) - \(\PageIndex{11}\), write each statement using inequalities.

    Exercise \(\PageIndex{8}\)

    \(x \in [3,4)\cup (4,\infty)\)

    Answer

    \(3 \leq x <4\) or \(x>4\)

    Exercise \(\PageIndex{9}\)

    \(x \in [-2,4)\)

    Answer

    \(-2 \leq x < 4\)

    Exercise \(\PageIndex{10}\)

    \(x \in (5,6] \cup [7,8)\)

    Answer

    \(5 < x \leq 6\) or \(7 \leq x <8\)

    Exercise \(\PageIndex{11}\)

    \(x \in (5,6] \cup [7,8)\)

    Answer

    \(5 < x \leq 6\) or \(7 \leq x <8\)

    In exercises \(\PageIndex{12}\) - \(\PageIndex{22}\), express the domain of the given function using interval notation.

    Exercise \(\PageIndex{12}\)

    \(\displaystyle \frac{\sqrt{x+11}}{x-11}\)

    Answer

    \(x \in [-11,11) \cup (11,\infty)\)

    Exercise \(\PageIndex{13}\)

    \(\displaystyle \frac{\ln{(x-6)}}{2x-26}\)

    Answer

    \(x \in (6,13)\cup (13, \infty)\)

    Exercise \(\PageIndex{14}\)

    \(\displaystyle \frac{2t}{\sqrt{t-5}}\)

    Answer

    \(t \in (5,\infty)\)

    Exercise \(\PageIndex{15}\)

    \(\displaystyle \ln{(\sqrt{x+3})}\)

    Answer

    \(x \in (-3,\infty)\)

    Exercise \(\PageIndex{16}\)

    \(\displaystyle \theta^3+4\theta^2-2\theta+\pi\)

    Answer

    \(\theta \in (-\infty,\infty)\)

    Exercise \(\PageIndex{17}\)

    \(\displaystyle \frac{\log_3{(x-4)}}{\log_3{(2x)}}\)

    Answer

    D: \((4,\infty)\)

    Exercise \(\PageIndex{18}\)

    \(\displaystyle \frac{x}{\log_2{(2x-1)}}\)

    Answer

    D: \((\frac{1}{2},1)\cup(1,\infty))\)

    Exercise \(\PageIndex{19}\)

    \(\displaystyle f(x) = \ln{(4-x^2)}\)

    Answer

    D: \((-2,2)\)

    Exercise \(\PageIndex{20}\)

    \(\displaystyle f(x) = \ln{(x^2-4)}\)

    Answer

    D: \((-\infty,-2) \cup(2, \infty)\)

    Exercise \(\PageIndex{21}\)

    \(\displaystyle f(x) = \sqrt{(x+3)^2-4}\)

    Answer

    D: \((-\infty,-5] \cup [-1, \infty)\)

    Exercise \(\PageIndex{22}\)

    \(\displaystyle f(x) = \sqrt[3]{(x-2)^3 +1}\)

    Answer

    D: \((-\infty,\infty)\)


    This page titled 2.3.1: Exercises 2.3 is shared under a CC BY-NC license and was authored, remixed, and/or curated by Amy Givler Chapman, Meagan Herald, Jessica Libertini.

    • Was this article helpful?