$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 3.4E: Factor Theorem and Remainder Theorem (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Use polynomial long division to perform the indicated division.

1. $$\left(4x^{2} +3x-1\right)\div (x-3)$$

2. $$\left(2x^{3} -x+1\right)\div \left(x^{2} +x+1\right)$$

3. $$\left(5x^{4} -3x^{3} +2x^{2} -1\right)\div \left(x^{2} +4\right)$$

4. $$\left(-x^{5} +7x^{3} -x\right)\div \left(x^{3} -x^{2} +1\right)$$

5. $$\left(9x^{3} +5\right)\div \left(2x-3\right)$$

6. $$\left(4x^{2} -x-23\right)\div \left(x^{2} -1\right)$$

Use synthetic division to perform the indicated division.

7. $$\left(3x^{2} -2x+1\right)\div \left(x-1\right)$$

8. $$\left(x^{2} -5\right)\div \left(x-5\right)$$

9. $$\left(3-4x-2x^{2} \right)\div \left(x+1\right)$$

10. $$\left(4x^{2} -5x+3\right)\div \left(x+3\right)$$

11. $$\left(x^{3} +8\right)\div \left(x+2\right)$$

12. $$\left(4x^{3} +2x-3\right)\div \left(x-3\right)$$

13. $$\left(18x^{2} -15x-25\right)\div \left(x-\frac{5}{3} \right)$$

14. $$\left(4x^{2} -1\right)\div \left(x-\frac{1}{2} \right)$$

15. $$\left(2x^{3} +x^{2} +2x+1\right)\div \left(x+\frac{1}{2} \right)$$

16. $$\left(3x^{3} -x+4\right)\div \left(x-\frac{2}{3} \right)$$

17. $$\left(2x^{3} -3x+1\right)\div \left(x-\frac{1}{2} \right)$$

18. $$\left(4x^{4} -12x^{3} +13x^{2} -12x+9\right)\div \left(x-\frac{3}{2} \right)$$

19. $$\left(x^{4} -6x^{2} +9\right)\div \left(x-\sqrt{3} \right)$$

20. $$\left(x^{6} -6x^{4} +12x^{2} -8\right)\div \left(x+\sqrt{2} \right)$$

Below you are given a polynomial and one of its zeros. Use the techniques in this section to find the rest of the real zeros and factor the polynomial.

21. $$x^{3} -6x^{2} +11x-6,\; \; c=1$$

22. $$x^{3} -24x^{2} +192x-512,\; \; c=8$$

23. $$3x^{3} +4x^{2} -x-2,\; \; c=\frac{2}{3}$$

24. $$2x^{3} -3x^{2} -11x+6,\; \; c=\frac{1}{2}$$

25. $$x^{3} +2x^{2} -3x-6,\; \; c=-2$$

26. $$2x^{3} -x^{2} -10x+5,\; \; c=\frac{1}{2}$$

27. $$4x^{4} -28x^{3} +61x^{2} -42x+9$$, $$c=\frac{1}{2}$$ is a zero of multiplicity 2

28. $$x^{5} +2x^{4} -12x^{3} -38x^{2} -37x-12$$, $$c=-1$$ is a zero of multiplicity 3