6.4E: Solving Trigonometric Equations (Exercises)
- Page ID
- 13926
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Section 6.4 Exercises
Give all answers in radians unless otherwise indicated.
Find all solutions on the interval \(0\le \theta <2\pi\).
1. \(2\sin \left(\theta \right)=-\sqrt{2}\)
2. \(2\sin \left(\theta \right)=\sqrt{3}\)
3. \(2\cos \left(\theta \right)=1\)
4. \(2\cos \left(\theta \right)=-\sqrt{2}\)
5. \(\sin \left(\theta \right)=1\)
6. \(\sin \left(\theta \right)=0\)
7. \(\cos \left(\theta \right)=0\)
8. \(\cos \left(\theta \right)=-1\)
Find all solutions.
9. \(2\cos \left(\theta \right)=\sqrt{2}\)
10. \(2\cos \left(\theta \right)=-1\)
11. \(2\sin \left(\theta \right)=-1\)
12. \(2\sin \left(\theta \right)=-\sqrt{3}\)
Find all solutions.
13. \(2\sin \left(3\theta \right)=1\)
14. \(2\sin \left(2\theta \right)=\sqrt{3}\)
15. \(2\sin \left(3\theta \right)=-\sqrt{2}\)
16. \(2\sin \left(3\theta \right)=-1\)
17. \(2\cos \left(2\theta \right)=1\)
18. \(2\cos \left(2\theta \right)=\sqrt{3}\)
19. \(2\cos \left(3\theta \right)=-\sqrt{2}\)
20. \(2\cos \left(2\theta \right)=-1\)
21. \(\cos \left(\dfrac{\pi }{4} \theta \right)=-1\)
22. \(\sin \left(\dfrac{\pi }{3} \theta \right)=-1\)
23. \(2\sin \left(\pi \theta \right)=1.\)
24. \(2\cos \left(\dfrac{\pi }{5} \theta \right)=\sqrt{3}\)
Find all solutions on the interval \(0\le x<2\pi\).
25. \(\sin \left(x\right)=0.27\)
26. \(\sin \left(x\right)= 0.48\)
27. \(\sin \left(x\right)= -0.58\)
28. \(\sin \left(x\right)=-0.34\)
29. \(\cos \left(x\right)=-0.55\)
30. \(\sin \left(x\right)= 0.28\)
31. \(\cos \left(x\right)= 0.71\)
32. \(\cos \left(x\right)=-0.07\)
Find the first two positive solutions.
33. \(7\sin \left(6x\right)=2\)
34. \(7\sin \left(5x\right)= 6\)
35. \(5\cos \left(3x\right)=-3\)
36. \(3\cos \left(4x\right)=2\)
37. \(3\sin \left(\dfrac{\pi }{4} x\right)=2\)
38. \(7\sin \left(\dfrac{\pi }{5} x\right)=6\)
39. \(5\cos \left(\dfrac{\pi }{3} x\right)=1\)
40. \(3\cos \left(\dfrac{\pi }{2} x\right)=-2\)
- Answer
-
1. \(\dfrac{5\pi}{4}\), \(\dfrac{7\pi}{4}\)
3. \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\)
5. \(\dfrac{\pi}{2}\)
7. \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\)
9. \(\dfrac{\pi}{4} + 2 \pi k\), \(\dfrac{7\pi}{4} + 2 \pi k\), where \(k\) is an integer
11. \(\dfrac{7\pi}{6} + 2 \pi k\), \(\dfrac{11\pi}{6} + 2 \pi k\), where \(k\) is an integer
13. \(\dfrac{\pi}{18} + \dfrac{2 \pi}{3} k\), \(\dfrac{5\pi}{18} + \dfrac{2 \pi}{3} k\), where \(k\) is an integer
15. \(\dfrac{5\pi}{12} + \dfrac{2 \pi}{3} k\), \(\dfrac{7\pi}{12} + \dfrac{2 \pi}{3} k\), where \(k\) is an integer
17. \(\dfrac{\pi}{6} + \pi k\), \(\dfrac{5\pi}{6} + \pi k\), where \(k\) is an integer
19. \(\dfrac{\pi}{4} + \dfrac{2 \pi}{3} k\), \(\dfrac{5\pi}{12} + \dfrac{2 \pi}{3} k\), where \(k\) is an integer
21. \(4 + 8k\), where \(k\) is an integer
23. \(\dfrac{1}{6} + 2k\), \(\dfrac{5}{6} + 2k\), where \(k\) is an integer
25. 0.2734, 2.8682
27. 3.7603, 5.6645
29. 2.1532, 4.1300
31. 0.7813, 5.5019
33. 0.04829, 0.47531
35. 0.7381, 1.3563
37. 0.9291, 3.0709
39. 1.3077, 4.6923