4.1: Graphing with the TI-84
- Page ID
- 48968
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We now use the TI-84 to graph functions such as the functions discussed in the previous chapters. We start by graphing the very well-known function \(y=x^2\), which is of course a parabola. To graph \(y=x^2\), we first have to enter the function. Press the \(\boxed {y =}\) key to get to the function menu:
In the first line, enter the function \(y=x^2\) by pressing the buttons \(\boxed {X,T,\theta ,n} \) for the variable “\(x\),” and then press the button \(\boxed {x^2}\). We obtain
We now go to the graphing window by pressing the \(\boxed {\text{graph}}\) key. We obtain:
Here, the viewing window is displayed in its initial and standard setting between \(-10\) and \(10\) on the \(x\)-axis, and between \(-10\) and \(10\) on the \(y\)-axis. These settings may be changed by pressing the \(\boxed {\text{window}}\) or the \(\boxed {\text{zoom}}\) keys. First, pressing \(\boxed {\text{window}}\), we may change the scale by setting Xmin, Xmax, Ymin and Ymax to some new values using \(\boxed {\bigtriangledown }\) and \(\boxed {\text{enter}}\):
Note, that negative numbers have to be entered via \(\boxed {(-)}\) and not using \(\boxed {-}\).
The difference between \(\boxed {(-)}\) and \(\boxed {-}\) is that \(\boxed {(-)}\) is used to denote negative numbers (such as \(-10\)), whereas \(\boxed {-}\) is used to subtract two numbers (such as \(7-3\)).
A source for a common error occurs when the “Plot1" item in the function menu is highlighted. When graphing a function as above, always make sure that none of the “plots” are highlighted.
After changing the minimum and maximum \(x\)- and \(y\)-values of our window, we can see the result after pressing \(\boxed {\text{graph}}\) again:
We may zoom in or out or put the setting back to the standard viewing size by pressing the \(\boxed {\text{zoom}}\) key:
We may zoom in by pressing \(\boxed {2}\), then choose a center in the graph where we want to focus (via the\(\boxed {\bigtriangleup }\), \(\boxed {\bigtriangledown }\), \(\boxed {\triangleleft }\), \(\boxed {\triangleright }\) keys), and confirm this with \(\boxed {\text{enter}}\):
Similarly, we may also zoom out (pressing using \(\boxed {3}\) in the zoom menu and choosing a center). Finally we can recover the original setting by using ZStandard in the zoom menu (press \(\boxed {6}\)).
We can graph more than one function in the same window, which we show next.
Graph the equations \(y=\sqrt{7-x}\) and \(y=x^3-2x^2-4\) in the same window.
Solution
Enter the functions as Y1 and Y2 after pressing \(\boxed {y=}\).
The graphs of both functions appear together in the graphing window:
Here, the square root symbol “\(\sqrt{\,\,}\)” is obtained using \(\boxed {2\text{nd}}\) and \(\boxed {x^2}\), and the third power via \(\boxed {\wedge}\) and \(\boxed {3}\) (followed by \(\boxed {\triangleright }\) to continue entering the function on the base line).
Graph the relation \((x-3)^2+(y-5)^2=16\).
Solution
Since the above expression is not solved for \(y\), we cannot simply plug this into the calculator. Instead, we have to solve for \(y\) first.
\[\begin{aligned} (x-3)^2+(y-5)^2=16 &\implies & (y-5)^2=16-(x-3)^2 \\ &\implies & y-5=\pm \sqrt{16-(x-3)^2} \\ &\implies & y=5\pm \sqrt{16-(x-3)^2} \end{aligned} \nonumber \]
Note, that there are two functions that we need to graph: \(y=5+\sqrt{16-(x-3)^2}\) and \(y=5-\sqrt{16-(x-3)^2}\). Entering these as Y1 and Y2 in the calculator gives the following function menu and graphing window:
The graph displays a circle of radius \(4\) with a center at \((3,5)\). However, due to the current scaling, the graph looks more like an ellipse instead of a circle. We can remedy this by using the “zoom square” function; press \(\boxed {\text{zoom}}\) \(\boxed {5}\). This adjusts the axis to the same scale in the \(x\)- and the \(y\)-direction. We obtain the following graph:
We recall that the equation \((x-h)^2+(y-k)^2=r^2\) always forms a circle in the plane. Indeed, this equation describes a circle with center \(C(h,k)\) and radius \(r\).