Homework
In exercises 1 - 10, find the antiderivatives for the given functions.
1) \(\cosh(2x+1)\)
- Answer
- \(\frac{1}{2}\sinh(2x+1)+C\)
2) \(\tanh(3x+2)\)
3) \(x\cosh(x^2)\)
- Answer
- \(\frac{1}{2}\sinh^2(x^2)+C\)
4) \(3x^3\tanh(x^4)\)
5) \(\cosh^2(x)\sinh(x)\)
- Answer
- \(\frac{1}{3}\cosh^3(x)+C\)
6) \(\tanh^2(x)\text{sech}^2(x)\)
7) \(\dfrac{\sinh(x)}{1+\cosh(x)}\)
- Answer
- \(\ln(1+\cosh(x))+C\)
8) \(\coth(x)\)
9) \(\cosh(x)+\sinh(x)\)
- Answer
- \(\cosh(x)+\sinh(x)+C\)
10) \((\cosh(x)+\sinh(x))^n\)
In exercises 11 - 17, find the antiderivatives for the functions.
11) \(\displaystyle \int\frac{dx}{4−x^2}\)
12) \(\displaystyle \int\frac{dx}{a^2−x^2}\)
- Answer
- \(\dfrac{1}{a}\tanh^{−1}\left(\dfrac{x}{a}\right)+C\)
13) \(\displaystyle \int\frac{dx}{\sqrt{x^2+1}}\)
14) \(\displaystyle \int\frac{x \, dx}{\sqrt{x^2+1}}\)
- Answer
- \(\sqrt{x^2+1}+C\)
15) \(\displaystyle \int−\frac{dx}{x\sqrt{1−x^2}}\)
16) \(\displaystyle \int\frac{e^x \, dx}{\sqrt{e^{2x}−1}}\)
- Answer
- \(\cosh^{−1}(e^x)+C\)
17) \(\displaystyle \int−\frac{2x}{x^4−1} \, dx\)
18) Why is \(u\)-substitution referred to as a change of variable?
19) If \( f=g \circ h\), when reversing the chain rule, \(\dfrac{d}{dx}(g \circ h)(x)=g′(h(x))h′(x)\), should you take \( u=g(x)\) or \(u=h(x)\)?
- Answer
- \(u=h(x)\)
In exercises 20 - 24, verify each identity using differentiation. Then, using the indicated \(u\)-substitution, identify \(f\) such that the integral takes the form \(\displaystyle\int f(u)\,du\).
20) \(\displaystyle \int x\sqrt{x+1}\,dx=\frac{2}{15}(x+1)^{3/2}(3x−2)+C;\quad u=x+1\)
21) \(\displaystyle\int\frac{x^2}{\sqrt{x−1}}\,dx=\frac{2}{15}\sqrt{x−1}(3x^2+4x+8)+C,\quad (x>1);\quad u=x−1\)
- Answer
- \( f(u)=\dfrac{(u+1)^2}{\sqrt{u}}\)
22) \(\displaystyle\int x\sqrt{4x^2+9}\,dx=\frac{1}{12}(4x^2+9)^{3/2}+C;\quad u=4x^2+9\)
23) \(\displaystyle\int\frac{x}{\sqrt{4x^2+9}}\,dx=\frac{1}{4}\sqrt{4x^2+9}+C;\quad u=4x^2+9\)
- Answer
- \( du=8x\,dx;\quad f(u)=\frac{1}{8\sqrt{u}}\)
24) \(\displaystyle\int\frac{x}{(4x^2+9)^2}\,dx=−\frac{1}{8(4x^2+9)} + C;\quad u=4x^2+9\)
In exercises 25 - 34, find the antiderivative using the indicated substitution.
25) \(\displaystyle\int(x+1)^4\,dx;\quad u=x+1\)
- Answer
- \(\displaystyle\int(x+1)^4\,dx = \frac{1}{5}(x+1)^5+C\)
26) \(\displaystyle\int(x−1)^5\,dx;\quad u=x−1\)
27) \(\displaystyle\int(2x−3)^{−7}\,dx;\quad u=2x−3\)
- Answer
- \(\displaystyle\int(2x−3)^{−7}\,dx = −\frac{1}{12(2x−3)^6}+C\)
28) \(\displaystyle\int(3x−2)^{−11}\,dx;\quad u=3x−2\)
29) \(\displaystyle\int\frac{x}{\sqrt{x^2+1}}\,dx;\quad u=x^2+1\)
- Answer
- \(\displaystyle\int\frac{x}{\sqrt{x^2+1}}\,dx = \sqrt{x^2+1}+C\)
30) \(\displaystyle\int\frac{x}{\sqrt{1−x^2}}\,dx;\quad u=1−x^2\)
31) \(\displaystyle\int(x−1)(x^2−2x)^3\,dx;\quad u=x^2−2x\)
- Answer
- \(\displaystyle\int(x−1)(x^2−2x)^3\,dx = \frac{1}{8}(x^2−2x)^4+C\)
32) \(\displaystyle\int(x^2−2x)(x^3−3x^2)^2\,dx;\quad u=x^3=3x^2\)
33) \(\displaystyle\int\cos^3 \theta \,d \theta ;\quad u=\sin \theta \) (Hint: \(\cos^2 \theta =1−\sin^2 \theta \))
- Answer
- \(\displaystyle\int\cos^3 \theta \,d \theta = \sin \theta −\dfrac{\sin^3 \theta }{3}+C\)
34) \(\displaystyle \int\sin^3 \theta \,d \theta ;\quad u=\cos \theta \) (Hint: \(\sin^2 \theta =1−\cos^2 \theta \))
In exercises 35 - 51, use a suitable change of variables to determine the indefinite integral.
35) \(\displaystyle\int x(1−x)^{99}\,dx\)
- Answer
- \(\begin{align*} \displaystyle\int x(1−x)^{99}\,dx &= \frac{(1−x)^{101}}{101}−\frac{(1−x)^{100}}{100}+C \\[4pt]
&=-\frac{(1-x)^{100}}{10100}\big[ 100x + 1 \big]+C \end{align*}\)
36) \(\displaystyle\int t(1−t^2)^{10} \, dt\)
37) \(\displaystyle\int(11x−7)^{−3}\,dx\)
- Answer
- \(\displaystyle\int(11x−7)^{−3}\,dx = −\frac{1}{22(11x−7)^2}+C\)
38) \(\displaystyle\int(7x−11)^4\,dx\)
39) \(\displaystyle\int\cos^3 \theta \sin \theta \,d \theta \)
- Answer
- \(\displaystyle\int\cos^3 \theta \sin \theta \,d \theta = −\frac{\cos^4 \theta }{4}+C\)
40) \(\displaystyle\int\sin^7 \theta \cos \theta \,d \theta \)
41) \(\displaystyle\int\cos^2( \pi t)\sin( \pi t)\,dt\)
- Answer
- \(\displaystyle\int\cos^2( \pi t)\sin( \pi t)\,dt = −\frac{cos^3( \pi t)}{3 \pi }+C\)
42) \(\displaystyle\int\sin^2 x\cos^3 x\,dx\) (Hint: \(\sin^2 x+\cos^2 x=1\))
43) \(\displaystyle\int t\sin(t^2)\cos(t^2)\,dt\)
- Answer
- \(\displaystyle\int t\sin(t^2)\cos(t^2)\,dt = −\frac{1}{4}\cos^2(t^2)+C\)
44) \(\displaystyle\int t^2\cos^2(t^3)\sin(t^3)\,dt\)
45) \(\displaystyle\int\frac{x^2}{(x^3−3)^2}\,dx\)
- Answer
- \(\displaystyle\int\frac{x^2}{(x^3−3)^2}\,dx = −\frac{1}{3(x^3−3)}+C\)
46) \(\displaystyle\int\frac{x^3}{\sqrt{1−x^2}}\,dx\)
47) \(\displaystyle\int\frac{y^5}{(1−y^3)^{3/2}}\,dy\)
- Answer
- \(\displaystyle\int\frac{y^5}{(1−y^3)^{3/2}}\,dy = −\frac{2(y^3−2)}{3\sqrt{1−y^3}}+C\)
48) \(\displaystyle\int\cos \theta (1−\cos \theta )^{99}\sin \theta \,d \theta \)
49) \(\displaystyle\int(1−\cos^3 \theta )^{10}\cos^2 \theta \sin \theta \,d \theta \)
- Answer
- \(\displaystyle\int(1−\cos^3 \theta )^{10}\cos^2 \theta \sin \theta \,d \theta = \frac{1}{33}(1−\cos^3 \theta )^{11}+C\)
50) \(\displaystyle\int(\cos \theta −1)(\cos^2 \theta −2\cos \theta )^3\sin \theta \,d \theta \)
51) \(\displaystyle\int(\sin^2 \theta −2\sin \theta )(\sin^3 \theta −3\sin^2 \theta )^3\cos \theta \,d \theta \)
- Answer
- \(\displaystyle\int(\sin^2 \theta −2\sin \theta )(\sin^3 \theta −3\sin^2 \theta )^3\cos \theta \,d \theta = \frac{1}{12}(\sin^3 \theta −3\sin^2 \theta )^4+C\)
In exercises 52 - 55, use a calculator to estimate the area under the curve using left Riemann sums with 50 terms, then use substitution to solve for the exact answer.
52) [Technology Required] \(y=3(1−x)^2\) over \([0,2]\)
53) [Technology Required] \(y=x(1−x^2)^3\) over \([−1,2]\)
- Answer
- \(L_{50}=−8.5779\). The exact area is \(\frac{−81}{8}\) units\(^2\).
54) [Technology Required] \(y=\sin x(1−\cos x)^2\) over \([0, \pi ]\)
55) [Technology Required] \(y=\dfrac{x}{(x^2+1)^2}\) over \([−1,1]\)
- Answer
- \(L_{50}=−0.006399\). The exact area is 0.
In exercises 56 - 61, use a change of variables to evaluate the definite integral.
56) \(\displaystyle\int^1_0x\sqrt{1−x^2}\,dx\)
57) \(\displaystyle\int^1_0\frac{x}{\sqrt{1+x^2}}\,dx\)
- Answer
- \(\displaystyle u=1+x^2,\quad du=2x\,dx,\quad \int^1_0\frac{x}{\sqrt{1+x^2}}\,dx = \frac{1}{2}\int^2_1u^{−1/2}du=\sqrt{2}−1\)
58) \(\displaystyle\int^2_0\frac{t}{\sqrt{5+t^2}}\,dt\)
59) \(\displaystyle\int^1_0\frac{t^2}{\sqrt{1+t^3}}\,dt\)
- Answer
- \(\displaystyle u=1+t^3,\quad du=3t^2,\quad \int^1_0\frac{t^2}{\sqrt{1+t^3}}\,dt = \frac{1}{3}\int^2_1u^{−1/2}du=\frac{2}{3}(\sqrt{2}−1)\)
60) \(\displaystyle\int^{ \pi /4}_0\sec^2 \theta \tan \theta \,d \theta \)
61) \(\displaystyle\int^{ \pi /4}_0\frac{\sin \theta }{\cos^4 \theta }\,d \theta \)
- Answer
- \(\displaystyle u=\cos \theta ,\quad du=−\sin \theta \,d \theta ,\quad \int^{ \pi /4}_0\frac{\sin \theta }{\cos^4 \theta }\,d \theta = -\int_1^{\sqrt{2}/2}u^{−4}\,du = \int^1_{\sqrt{2}/2}u^{−4}\,du=\frac{1}{3}(2\sqrt{2}−1)\)
In exercises 62 - 67, evaluate the indefinite integral \(\displaystyle \int f(x)\,dx\) with constant \(C=0\) using \(u\)-substitution. Then, graph the function and the antiderivative over the indicated interval. If possible, estimate a value of \(C\) that would need to be added to the antiderivative to make it equal to the definite integral \(\displaystyle F(x)=\int^x_af(t)\,dt\), with a the left endpoint of the given interval.
62) [Technology Required] \(\displaystyle\int(2x+1)e^{x^2+x−6}\,dx\) over \([−3,2]\)
63) [Technology Required] \(\displaystyle\int\frac{\cos(\ln(2x))}{x}\,dx\) on \([0,2]\)
- Answer
-

The antiderivative is \(y=\sin(\ln(2x))\). Since the antiderivative is not continuous at \(x=0\), one cannot find a value of C that would make \(y=\sin(\ln(2x))−C\) work as a definite integral.
64) [Technology Required] \(\displaystyle \int\frac{3x^2+2x+1}{\sqrt{x^3+x^2+x+4}}\,dx\) over \([−1,2]\)
65) [Technology Required] \(\displaystyle \int\frac{\sin x}{\cos^3x}\,dx\) over \(\left[−\frac{ \pi }{3},\frac{ \pi }{3}\right]\)
- Answer
-
![Two graphs. The first is the function f(x) = sin(x) / cos(x)^3 over [-5pi/16, 5pi/16]. It is an increasing concave down function for values less than zero and an increasing concave up function for values greater than zero. The second is the fuction f(x) = ½ sec(x)^2 over the same interval. It is a wide, concave up curve which decreases for values less than zero and increases for values greater than zero.](https://math.libretexts.org/@api/deki/files/2632/CNX_Calc_Figure_05_05_206.jpeg?revision=1&size=bestfit&width=269&height=600)
The antiderivative is \(y=\frac{1}{2}\sec^2 x\). You should take \(C=−2\) so that \(F(−\frac{ \pi }{3})=0\).
66) [Technology Required] \(\displaystyle \int(x+2)e^{−x^2−4x+3}\,dx\) over \([−5,1]\)
67) [Technology Required] \(\displaystyle \int3x^2\sqrt{2x^3+1}\,dx\) over \([0,1]\)
- Answer
-

The antiderivative is \( y=\frac{1}{3}(2x^3+1)^{3/2}\). One should take \(C=−\frac{1}{3}\).
68) If \(h(a)=h(b)\) in \(\displaystyle \int^b_ag'(h(x))h(x)\,dx\), what can you say about the value of the integral?
69) Is the substitution \(u=1−x^2\) in the definite integral \(\displaystyle \int^2_0\frac{x}{1−x^2}\,dx\) okay? If not, why not?
- Answer
- No, because the integrand is discontinuous at \(x=1\).
In exercises 70 - 76, use a change of variables to show that each definite integral is equal to zero.
70) \(\displaystyle \int^ \pi _0\cos^2(2 \theta )\sin(2 \theta )\,d \theta \)
71) \(\displaystyle \int^\sqrt{ \pi }_0t\cos(t^2)\sin(t^2)\,dt\)
- Answer
- \(u=\sin(t^2);\) the integral becomes \(\displaystyle \frac{1}{2}\int^0_0u\,du\).
72) \(\displaystyle \int^1_0(1−2t)\,dt\)
73) \(\displaystyle \int^1_0\frac{1−2t}{1+(t−\frac{1}{2})^2}\,dt\)
- Answer
- \(u=1+(t−\frac{1}{2})^2;\) the integral becomes \(\displaystyle −\int^{5/4}_{5/4}\frac{1}{u}\,du\).
74) \(\displaystyle \int^ \pi _0\sin\left(\left(t−\tfrac{ \pi }{2}\right)^3\right)\cos\left(t−\tfrac{ \pi }{2}\right)\,dt\)
75) \(\displaystyle \int^2_0(1−t)\cos( \pi t)\,dt\)
- Answer
- \(u=1−t;\) Since the integrand is odd, the integral becomes
\[\int^{−1}_1u\cos\big( \pi (1−u)\big)\,du=\int^{−1}_1u[\cos \pi \cos u−\sin \pi \sin u]\,du=−\int^{−1}_1u\cos u\,du=\int_{-1}^1u\cos u\,du=0\nonumber \]
76) \(\displaystyle \int^{3 \pi /4}_{ \pi /4}\sin^2 t\cos t\,dt\)
77) Show that the average value of \(f(x)\) over an interval \([a,b]\) is the same as the average value of \(f(cx)\) over the interval \(\left[\frac{a}{c},\frac{b}{c}\right]\) for \(c>0\).
- Answer
- Setting \(u=cx\) and \(du=c\,dx\) gets you \(\displaystyle \frac{1}{\frac{b}{c}−\frac{a}{c}}\int^{b/c}_{a/c}f(cx)\,dx=\frac{c}{b−a}\int^{u=b}_{u=a}f(u)\frac{du}{c}=\frac{1}{b−a}\int^b_af(u)\,du\).
78) Find the area under the graph of \(f(t)=\dfrac{t}{(1+t^2)^a}\) between \(t=0\) and \(t=x\) where \(a>0\) and \(a \neq 1\) is fixed, and evaluate the limit as \(x \to \infty \).
79) Find the area under the graph of \(g(t)=\dfrac{t}{(1−t^2)^a}\) between \(t=0\) and \(t=x\), where \(0<x<1\) and \(a>0\) is fixed. Evaluate the limit as \(x \to 1\).
- Answer
- \(\displaystyle \int^x_0g(t)\,dt=\frac{1}{2}\int^1_{u=1−x^2} \frac{du}{u^a}=\frac{1}{2(1−a)}u^{1−a}∣1u=\frac{1}{2(1−a)}(1−(1−x^2)^{1−a})\) As \(x \to 1\) the limit is \(\dfrac{1}{2(1−a)}\) if \(a<1\), and the limit diverges to \(+ \infty \) if \(a>1\).
80) The area of a semicircle of radius \(1\) can be expressed as \(\displaystyle \int^1_{−1}\sqrt{1−x^2}\,dx\). Use the substitution \(x=\cos t\) to express the area of a semicircle as the integral of a trigonometric function. You do not need to compute the integral.
81) The area of the top half of an ellipse with a major axis that is the \(x\)-axis from \(x=−1\) to a and with a minor axis that is the \(y\)-axis from \(y=−b\) to \(y=b\) can be written as \(\displaystyle \int^a_{−a}b\sqrt{1−\frac{x^2}{a^2}}\,dx\). Use the substitution \(x=a\cos t\) to express this area in terms of an integral of a trigonometric function. You do not need to compute the integral.
- Answer
- \(\displaystyle \int^{t=0}_{t= \pi }b\sqrt{1−\cos^2 t} \times (−a\sin t)\,dt=\int^{t= \pi }_{t=0}ab\sin^2 t\,dt\)
82) [Technology Required] The following graph is of a function of the form \( f(t)=a\sin(nt)+b\sin(mt)\). Estimate the coefficients \(a\) and \(b\) and the frequency parameters \(n\) and \(m\). Use these estimates to approximate \(\displaystyle \int^ \pi _0f(t)\,dt\).
![A graph of a function of the given form over [0, 2pi], which has six turning points. They are located at just before pi/4, just after pi/2, between 3pi/4 and pi, between pi and 5pi/4, just before 3pi/2, and just after 7pi/4 at about 3, -2, 1, -1, 2, and -3. It begins at the origin and ends at (2pi, 0). It crosses the x axis between pi/4 and pi/2, just before 3pi/4, pi, just after 5pi/4, and between 3pi/2 and 4pi/4.](https://math.libretexts.org/@api/deki/files/2634/CNX_Calc_Figure_05_05_201.jpeg?revision=1&size=bestfit&width=325&height=246)
83) [Technology Required] The following graph is of a function of the form \(f(x)=a\cos(nt)+b\cos(mt)\). Estimate the coefficients \(a\) and \(b\) and the frequency parameters \(n\) and \(m\). Use these estimates to approximate \(\displaystyle \int^ \pi _0f(t)\,dt\).
![The graph of a function of the given form over [0, 2pi]. It begins at (0,1) and ends at (2pi, 1). It has five turning points, located just after pi/4, between pi/2 and 3pi/4, pi, between 5pi/4 and 3pi/2, and just before 7pi/4 at about -1.5, 2.5, -3, 2.5, and -1. It crosses the x axis between 0 and pi/4, just before pi/2, just after 3pi/4, just before 5pi/4, just after 3pi/2, and between 7pi/4 and 2pi.](https://math.libretexts.org/@api/deki/files/2635/CNX_Calc_Figure_05_05_202.jpeg?revision=1&size=bestfit&width=325&height=246)
- Answer
- \(f(t)=2\cos(3t)−\cos(2t);\quad \displaystyle \int^{ \pi /2}_0(2\cos(3t)−\cos(2t))\,dt=−\frac{2}{3}\)