# 9.5: Sums and Intersections

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Outcomes

1. Show that the sum of two subspaces is a subspace.
2. Show that the intersection of two subspaces is a subspace.

We begin this section with a definition.

## Definition $$\PageIndex{1}$$: Sum and Intersection

Let $$V$$ be a vector space, and let $$U$$ and $$W$$ be subspaces of $$V$$. Then

1. $$U+W = \{ \vec{u}+\vec{w} ~|~ \vec{u}\in U\mbox{ and } \vec{w}\in W\}$$ and is called the sum of $$U$$ and $$W$$.
2. $$U\cap W = \{ \vec{v} ~|~ \vec{v}\in U\mbox{ and } \vec{v}\in W\}$$ and is called the intersection of $$U$$ and $$W$$.

Therefore the intersection of two subspaces is all the vectors shared by both. If there are no vectors shared by both subspaces, meaning that $$U \cap W = \left\{ \vec{0} \right\}$$, the sum $$U+W$$ takes on a special name.

## Definition $$\PageIndex{2}$$: Direct Sum

Let $$V$$ be a vector space and suppose $$U$$ and $$W$$ are subspaces of $$V$$ such that $$U \cap W = \left\{ \vec{0} \right\}$$. Then the sum of $$U$$ and $$W$$ is called the direct sum and is denoted $$U \oplus W$$.

An interesting result is that both the sum $$U + W$$ and the intersection $$U \cap W$$ are subspaces of $$V$$.

## Example $$\PageIndex{1}$$: Intersection is a Subspace

Let $$V$$ be a vector space and suppose $$U$$ and $$W$$ are subspaces. Then the intersection $$U \cap W$$ is a subspace of $$V$$.

Solution

By the subspace test, we must show three things:

1. $$\vec{0} \in U \cap W$$
2. For vectors $$\vec{v}_1, \vec{v}_2 \in U \cap W, \vec{v}_1+\vec{v}_2 \in U \cap W$$
3. For scalar $$a$$ and vector $$\vec{v} \in U \cap W, a\vec{v} \in U \cap W$$

We proceed to show each of these three conditions hold.

1. Since $$U$$ and $$W$$ are subspaces of $$V$$, they each contain $$\vec{0}$$. By definition of the intersection, $$\vec{0} \in U \cap W$$.
2. Let $$\vec{v}_1, \vec{v}_2 \in U \cap W,$$. Then in particular, $$\vec{v}_1, \vec{v}_2 \in U$$. Since $$U$$ is a subspace, it follows that $$\vec{v}_1+\vec{v}_2 \in U$$. The same argument holds for $$W$$. Therefore $$\vec{v}_1+\vec{v}_2$$ is in both $$U$$ and $$W$$ and by definition is also in $$U \cap W$$.
3. Let $$a$$ be a scalar and $$\vec{v} \in U \cap W$$. Then in particular, $$\vec{v} \in U$$. Since $$U$$ is a subspace, it follows that $$a \vec{v} \in U$$. The same argument holds for $$W$$ so $$a\vec{v}$$ is in both $$U$$ and $$W$$. By definition, it is in $$U \cap W$$.

Therefore $$U \cap W$$ is a subspace of $$V$$.

It can also be shown that $$U + W$$ is a subspace of $$V$$.

We conclude this section with an important theorem on dimension.

## Theorem $$\PageIndex{1}$$: Dimension of Sum

Let $$V$$ be a vector space with subspaces $$U$$ and $$W$$. Suppose $$U$$ and $$W$$ each have finite dimension. Then $$U + W$$ also has finite dimension which is given by$\mathrm{dim} (U+W) = \mathrm{dim}(U) + \mathrm{dim}(W) - \mathrm{dim} (U \cap W)\nonumber$

Notice that when $$U \cap W = \left\{ \vec{0} \right\}$$, the sum becomes the direct sum and the above equation becomes $\mathrm{dim} (U \oplus W) = \mathrm{dim}(U) + \mathrm{dim}(W)\nonumber$

Below is a video on intersections and sums of subspaces.

This page titled 9.5: Sums and Intersections is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) .