Skip to main content
Mathematics LibreTexts

1.2: Basic Classes of Functions

  • Page ID
    139030
    • Gilbert Strang & Edwin “Jed” Herman
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    • Calculate the slope of a linear function and interpret its meaning.
    • Sketch the graph of a function that has been shifted, stretched, or reflected from its initial graph position.
    • Evaluate a piecewise-defined function.
    • Graph a quadratic function by finding the vertex and intercepts.

    We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with examples of piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.

    Linear Functions and Slope

    The easiest type of function to consider is a linear function. Linear functions have the form \(f(x)=ax+b\), where \(a\) and \(b\) are constants. In Figure \(\PageIndex{1}\), we see examples of linear functions when a is positive, negative, and zero. Note that if \(a>0\), the graph of the line rises as \(x\) increases. In other words, \(f(x)=ax+b\) is increasing on \((−∞, ∞)\). If \(a<0\), the graph of the line falls as \(x\) increases. In this case, \(f(x)=ax+b\) is decreasing on \((−∞, ∞)\). If \(a=0\), the line is horizontal.

    An image of a graph. The y axis runs from -2 to 5 and the x axis runs from -2 to 5. The graph is of the 3 functions. The first function is “f(x) = 3x + 1”, which is an increasing straight line with an x intercept at ((-1/3), 0) and a y intercept at (0, 1). The second function is “g(x) = 2”, which is a horizontal line with a y intercept at (0, 2) and no x intercept. The third function is “h(x) = (-1/2)x”, which is a decreasing straight line with an x intercept and y intercept both at the origin. The function f(x) is increasing at a higher rate than the function h(x) is decreasing.
    Figure \(\PageIndex{1}\): These linear functions are increasing or decreasing on \((∞, ∞)\) and one function is a horizontal line.

    As suggested by Figure \(\PageIndex{1}\), the graph of any linear function is a line. One of the distinguishing features of a line is its slope. The slope is the change in \(y\) for each unit change in \(x\). The slope measures both the steepness and the direction of a line. If the slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points downward when moving from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we need to determine the ratio of the change in \(y\) versus the change in \(x\). To do so, we choose any two points \((x_1,y_1)\) and \((x_2,y_2)\) on the line and calculate \(\dfrac{y_2−y_1}{x_2−x_1}\). In Figure \(\PageIndex{2}\), we see this ratio is independent of the points chosen.

    An image of a graph. The y axis runs from -1 to 10 and the x axis runs from -1 to 6. The graph is of a function that is an increasing straight line. There are four points labeled on the function at (1, 1), (2, 3), (3, 5), and (5, 9). There is a dotted horizontal line from the labeled function point (1, 1) to the unlabeled point (3, 1) which is not on the function, and then dotted vertical line from the unlabeled point (3, 1), which is not on the function, to the labeled function point (3, 5). These two dotted have the label “(y2 - y1)/(x2 - x1) = (5 -1)/(3 - 1) = 2”. There is a dotted horizontal line from the labeled function point (2, 3) to the unlabeled point (5, 3) which is not on the function, and then dotted vertical line from the unlabeled point (5, 3), which is not on the function, to the labeled function point (5, 9). These two dotted have the label “(y2 - y1)/(x2 - x1) = (9 -3)/(5 - 2) = 2”.
    Figure \(\PageIndex{2}\): For any linear function, the slope \((y_2−y_1)/(x_2−x_1)\) is independent of the choice of points \((x_1,y_1)\) and \((x_2,y_2)\) on the line.
    Definition: Slope of a Linear Function

    Consider line \(L\) passing through points \((x_1,y_1)\) and \((x_2,y_2)\). Let \(Δy=y_2−y_1\) and \(Δx=x_2−x_1\) denote the changes in \(y\) and \(x\),respectively. The slope of the line is

    \[m=\dfrac{y_2−y_1}{x_2−x_1}=\dfrac{Δy}{Δx} \nonumber \]

    We now examine the relationship between slope and the formula for a linear function. Consider the linear function given by the formula \(f(x)=ax+b\). As discussed earlier, we know the graph of a linear function is given by a line. We can use our definition of slope to calculate the slope of this line. As shown, we can determine the slope by calculating \((y_2−y_1)/(x_2−x_1)\) for any points \((x_1,y_1)\) and \((x_2,y_2)\) on the line. Evaluating the function \(f\) at \(x=0\), we see that \((0,b)\) is a point on this line. Evaluating this function at \(x=1\), we see that \((1,a+b)\) is also a point on this line. Therefore, the slope of this line is

    \[\dfrac{(a+b)−b}{1−0}=a. \nonumber \]

    We have shown that the coefficient \(a\) is the slope of the line. We can conclude that the formula \(f(x)=ax+b\) describes a line with slope \(a\). Furthermore, because this line intersects the \(y\)-axis at the point \((0,b)\), we see that the \(y\)-intercept for this linear function is \((0,b)\). We conclude that the formula \(f(x)=ax+b\) tells us the slope, \(a\), and the \(y\)-intercept, \((0,b)\), for this line. Since we often use the symbol \(m\) to denote the slope of a line, we can write

    \[\underbrace{f(x)=mx+b}_{\text{slope-intercept form}} \nonumber \]

    to denote the slope-intercept form of a linear function.

    Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function passes through the point \((x_1,y_1)\) and the slope of the line is \(m\). Since any other point \((x,f(x))\) on the graph of \(f\) must satisfy the equation

    \[m=\dfrac{f(x)−y_1}{x−x_1}, \nonumber \]

    this linear function can be expressed by writing

    \[\underbrace{f(x)−y_1=m(x−x_1)}_{\text{point-slope equation}}. \nonumber \]

    We call this equation the point-slope equation for that linear function.

    Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the slope-intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be expressed in either of these forms. Instead, a vertical line is described by the equation \(x=k\) for some constant \(k\). Since neither the slope-intercept form nor the point-slope form allows for vertical lines, we use the notation

    \[\underbrace{ax+by=c}_{\text{standard form}}, \nonumber \]

    where \(a,b\) are both not zero, to denote the standard form of a line.

    Definition: Point-Slope Equation, and the Slope-Intercept Form and Standard Form of the Equation of a Line

    Consider a line passing through the point \((x_1,y_1)\) with slope \(m\). The equation

    \[y−y_1=m(x−x_1) \nonumber \]

    is the point-slope equation for that line.

    Consider a line with slope \(m\) and \(y\)-intercept \((0,b).\) The equation

    \[y=mx+b \nonumber \]

    is an equation for that line in slope-intercept form.

    The standard form of a line is given by the equation

    \[ax+by=c, \nonumber \]

    where \(a\) and \(b\) are both not zero. This form is more general because it allows for a vertical line, \(x=k\).

    Example \(\PageIndex{1}\): Finding the Slope and Equations of Lines

    Consider the line passing through the points \((11,−4)\) and \((−4,5)\), as shown in Figure \(\PageIndex{3}\).

    An image of a graph. The x axis runs from -5 to 12 and the y axis runs from -5 to 6. The graph is of the function that is a decreasing straight line. The function has two points plotted, at (-4, 5) and (11, 4).
    Figure \(\PageIndex{3}\): Finding the equation of a linear function with a graph that is a line between two given points.
    1. Find the slope of the line.
    2. Find an equation for this linear function in point-slope form.
    3. Find an equation for this linear function in slope-intercept form.

    Solution

    1. The slope of the line is

    \[m=\dfrac{y_2−y_1}{x_2−x_1}=\dfrac{5−(−4)}{−4−11}=−\dfrac{9}{15}=−\dfrac{3}{5}. \nonumber \]

    2. To find an equation for the linear function in point-slope form, use the slope \(m=−3/5\) and choose any point on the line. If we choose the point \((11,−4)\), we get the equation

    \[f(x)+4=−\dfrac{3}{5}(x−11). \nonumber \]

    3. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for \(f(x)\). When we do this, we get the equation

    \[f(x)=−\dfrac{3}{5}x+\dfrac{13}{5}. \nonumber \]

    Exercise \(\PageIndex{1}\)

    Consider the line passing through points \((−3,2)\) and \((1,4)\).

    1. Find the slope of the line.
    2. Find an equation of that line in point-slope form.
    3. Find an equation of that line in slope-intercept form.
    Hint

    The slope \(m=Δy/Δx\).

    Answer a

    \(m=1/2\).

    Answer b

    The point-slope form is \(y−4=\dfrac{1}{2}(x−1)\).

    Answer c

    The slope-intercept form is \(y=\dfrac{1}{2}x+\dfrac{7}{2}\).

    Example \(\PageIndex{2}\):

    Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the following questions, assuming Jessica runs at a constant pace.

    1. Describe the distance \(D\) (in miles) Jessica runs as a linear function of her run time \(t\) (in minutes).
    2. Sketch a graph of \(D\).
    3. Interpret the meaning of the slope.

    Solution

    a. At time \(t=0\), Jessica is at her house, so \(D(0)=0\). At time \(t=78\) minutes, Jessica has finished running \(9\) mi, so \(D(78)=9\). The slope of the linear function is

    \[m=\dfrac{9−0}{78−0}=\dfrac{3}{26}.\nonumber \]

    The \(y\)-intercept is \((0,0)\), so the equation for this linear function is

    \[D(t)=\dfrac{3}{26}t. \nonumber \]

    b. To graph \(D\), use the fact that the graph passes through the origin and has slope \(m=3/26.\)

    An image of a graph. The y axis is labeled “y, distance in miles”. The x axis is labeled “t, time in minutes”. The graph is of the function “D(t) = 3t/26”, which is an increasing straight line that starts at the origin. The function ends at the plotted point (78, 9).

    c. The slope \(m=3/26≈0.115\) describes the distance (in miles) Jessica runs per minute, or her average velocity.

    Piecewise-Defined Functions

    Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is known as a piecewise-defined function. The absolute value function is an example of a piecewise-defined function because the formula changes with the sign of \(x\):

    \[f(x)=\begin{cases}−x, & \text{if } x<0\\x, & \text{if } x≥0\end{cases}. \nonumber \]

    Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the domain in which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective domain, on the same coordinate system. If the formula for a function is different for \(x<a\) and \(x>a\), we need to pay special attention to what happens at \(x=a\) when we graph the function. Sometimes the graph needs to include an open or closed circle to indicate the value of the function at \(x=a\). We examine this in the next example.

    Example \(\PageIndex{8}\): Graphing a Piecewise-Defined Function

    Sketch a graph of the following piecewise-defined function:

    \[f(x)=\begin{cases}x+3, & \text{if } x<1\\(x−2)^2, & \text{if } x≥1\end{cases} \nonumber \]

    Solution

    Graph the linear function \(y=x+3\) on the interval \((−∞,1)\) and graph the quadratic function \(y=(x−2)^2\) on the interval \([1,∞)\). Since the value of the function at \(x=1\) is given by the formula \(f(x)=(x−2)^2\), we see that \(f(1)=1\). To indicate this on the graph, we draw a closed circle at the point \((1,1)\). The value of the function is given by \(f(x)=x+3\) for all \(x<1\), but not at \(x=1\). To indicate this on the graph, we draw an open circle at \((1,4)\).

    An image of a graph. The x axis runs from -7 to 5 and the y axis runs from -4 to 6. The graph is of a function that has two pieces. The first piece is an increasing line that ends at the open circle point (1, 4) and has the label “f(x) = x + 3, for x < 1”. The second piece is parabolic and begins at the closed circle point (1, 1). After the point (1, 1), the piece begins to decrease until the point (2, 0) then begins to increase. This piece has the label “f(x) = (x - 2) squared, for x >= 1”.The function has x intercepts at (-3, 0) and (2, 0) and a y intercept at (0, 3).
    Figure \(\PageIndex{8}\): This piecewise-defined function is linear for \(x<1\) and quadratic for \(x≥1.\)

    2) Sketch a graph of the function

    \(f(x)=\begin{cases}2−x, & \text{if } x≤2\\x+2, & \text{if } x>2\end{cases}.\)

    Solution:

    An image of a graph. The x axis runs from -6 to 5 and the y axis runs from -2 to 7. The graph is of a function that has two pieces. The first piece is a decreasing line that ends at the closed circle point (2, 0) and has the label “f(x) = 2 - x, for x <= 2. The second piece is an increasing line and begins at the open circle point (2, 4) and has the label “f(x) = x + 2, for x > 2.The function has an x intercept at (2, 0) and a y intercept at (0, 2).

    Example \(\PageIndex{9}\): Parking Fees Described by a Piecewise-Defined Function

    In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first hour or any part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for the day. The parking garage is open from 6 a.m. to 12 midnight.

    1. Write a piecewise-defined function that describes the cost \(C\) to park in the parking garage as a function of hours parked \(x\).
    2. Sketch a graph of this function \(C(x).\)

    Solution

    1.Since the parking garage is open 18 hours each day, the domain for this function is \(\{x\,|\,0<x≤18\}\). The cost to park a car at this parking garage can be described piecewise by the function

    \[C(x)=\begin{cases}10, & \text{for } 0<x≤1\\12, & \text{for } 1<x≤2\\14, & \text{for } 2<x≤3\\16, & \text{for } 3<x≤4\\ ⋮\\30, & \text{for } 10<x≤18\end{cases}. \nonumber \]

    2.The graph of the function consists of several horizontal line segments.

    An image of a graph. The x axis runs from 0 to 18 and is labeled “x, hours”. The y axis runs from 0 to 32 and is labeled “y, cost in dollars”. The function consists 11 pieces, all horizontal line segments that begin with an open circle and end with a closed circle. The first piece starts at x = 0 and ends at x = 1 and is at y = 10. The second piece starts at x = 1 and ends at x = 2 and is at y = 12. The third piece starts at x = 2 and ends at x = 3 and is at y = 14. The fourth piece starts at x = 3 and ends at x = 4 and is at y = 16. The fifth piece starts at x = 4 and ends at x = 5 and is at y = 18. The sixth piece starts at x = 5 and ends at x = 6 and is at y = 20. The seventh piece starts at x = 6 and ends at x = 7 and is at y = 22. The eighth piece starts at x = 7 and ends at x = 8 and is at y = 24. The ninth piece starts at x = 8 and ends at x = 9 and is at y = 26. The tenth piece starts at x = 9 and ends at x = 10 and is at y = 28. The eleventh piece starts at x = 10 and ends at x = 18 and is at y = 30.

    Exercise \(\PageIndex{6}\)

    The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is \(49¢\) for the first ounce and \(21¢\) for each additional ounce. Write a piecewise-defined function describing the cost \(C\) as a function of the weight \(x\) for \(0<x≤3\), where \(C\) is measured in cents and \(x\) is measured in ounces.

    Hint

    The piecewise-defined function is constant on the intervals \((0,1],\,(1,2],\,….\)

    Answer

    \[C(x)=\begin{cases}49, 0<x≤1\\70, 1<x≤2\\91, 2<x≤3\end{cases} \nonumber \]

    Transformations of Functions

    We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple functions. In the previous example, for instance, we subtracted 2 from the argument of the function \(y=x^2\) to get the function \(f(x)=(x−2)^2\). This subtraction represents a shift of the function \(y=x^2\) two units to the right. A shift, horizontally or vertically, is a type of transformation of a function. Other transformations include horizontal and vertical scalings, and reflections about the axes.

    A vertical shift of a function occurs if we add or subtract the same constant to each output \(y\). For \(c>0\), the graph of \(f(x)+c\) is a shift of the graph of \(f(x)\) up \(c\) units, whereas the graph of \(f(x)−c\) is a shift of the graph of \(f(x)\) down \(c\) units. For example, the graph of the function \(f(x)=x^3+4\) is the graph of \(y=x^3\) shifted up \(4\) units; the graph of the function \(f(x)=x^3−4\) is the graph of \(y=x^3\) shifted down \(4\) units (Figure \(\PageIndex{9}\)).

    An image of two graphs. The first graph is labeled “a” and has an x axis that runs from -4 to 4 and a y axis that runs from -1 to 10. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = (x squared) + 4”, which is a parabola that decreases until the point (0, 4) and then increases again after the origin. The two functions are the same in shape, but the second function is shifted up 4 units. The second graph is labeled “b” and has an x axis that runs from -4 to 4 and a y axis that runs from -5 to 6. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = (x squared) - 4”, which is a parabola that decreases until the point (0, -4) and then increases again after the origin. The two functions are the same in shape, but the second function is shifted down 4 units.
    Figure \(\PageIndex{9}\): (a) For \(c>0\), the graph of \(y=f(x)+c\) is a vertical shift up \(c\) units of the graph of \(y=f(x)\). (b) For \(c>0\), the graph of \(y=f(x)−c\) is a vertical shift down c units of the graph of \(y=f(x)\).

    A horizontal shift of a function occurs if we add or subtract the same constant to each input \(x\). For \(c>0\), the graph of \(f(x+c)\) is a shift of the graph of \(f(x)\) to the left \(c\) units; the graph of \(f(x−c)\) is a shift of the graph of \(f(x)\) to the right \(c\) units. Why does the graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an example.

    Consider the function \(f(x)=|x+3|\) and evaluate this function at \(x−3\). Since \(f(x−3)=|x|\) and \(x−3<x\), the graph of \(f(x)=|x+3|\) is the graph of \(y=|x|\) shifted left \(3\) units. Similarly, the graph of \(f(x)=|x−3|\) is the graph of \(y=|x|\) shifted right \(3\) units (Figure \(\PageIndex{10}\)).

    An image of two graphs. The first graph is labeled “a” and has an x axis that runs from -8 to 5 and a y axis that runs from -3 to 5. The graph is of two functions. The first function is “f(x) = absolute value of x”, which decreases in a straight line until the origin and then increases in a straight line again after the origin. The second function is “f(x) = absolute value of (x + 3)”, which decreases in a straight line until the point (-3, 0) and then increases in a straight line again after the point (-3, 0). The two functions are the same in shape, but the second function is shifted left 3 units. The second graph is labeled “b” and has an x axis that runs from -5 to 8 and a y axis that runs from -3 to 5. The graph is of two functions. The first function is “f(x) = absolute value of x”, which decreases in a straight line until the origin and then increases in a straight line again after the origin. The second function is “f(x) = absolute value of (x - 3)”, which decreases in a straight line until the point (3, 0) and then increases in a straight line again after the point (3, 0). The two functions are the same in shape, but the second function is shifted right 3 units.
    Figure \(\PageIndex{10}\): (a) For \(c>0\), the graph of \(y=f(x+c)\) is a horizontal shift left \(c\) units of the graph of \(y=f(x)\). (b) For \(c>0\), the graph of \(y=f(x−c)\) is a horizontal shift right \(c\) units of the graph of \(y=f(x).\)

    A vertical scaling of a graph occurs if we multiply all outputs \(y\) of a function by the same positive constant. For \(c>0\), the graph of the function \(cf(x)\) is the graph of \(f(x)\) scaled vertically by a factor of \(c\). If \(c>1\), the values of the outputs for the function \(cf(x)\) are larger than the values of the outputs for the function \(f(x)\); therefore, the graph has been stretched vertically. If \(0<c<1\), then the outputs of the function \(cf(x)\) are smaller, so the graph has been compressed. For example, the graph of the function \(f(x)=3x^2\) is the graph of \(y=x^2\) stretched vertically by a factor of 3, whereas the graph of \(f(x)=x^2/3\) is the graph of \(y=x^2\) compressed vertically by a factor of \(3\) (Figure \(\PageIndex{11b}\)).

    An image of two graphs. The first graph is labeled “a” and has an x axis that runs from -3 to 3 and a y axis that runs from -2 to 9. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = 3(x squared)”, which is a parabola that decreases until the origin and then increases again after the origin, but is vertically stretched and thus increases at a quicker rate than the first function. The second graph is labeled “b” and has an x axis that runs from -4 to 4 and a y axis that runs from -2 to 9. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = (1/3)(x squared)”, which is a parabola that decreases until the origin and then increases again after the origin, but is vertically compressed and thus increases at a slower rate than the first function.
    Figure \(\PageIndex{11}\): (a) If \(c>1\), the graph of \(y=cf(x)\) is a vertical stretch of the graph of \(y=f(x)\). (b) If \(0<c<1\), the graph of \(y=cf(x)\) is a vertical compression of the graph of \(y=f(x)\).

    The horizontal scaling of a function occurs if we multiply the inputs \(x\) by the same positive constant. For \(c>0\), the graph of the function \(f(cx)\) is the graph of \(f(x)\) scaled horizontally by a factor of \(c\). If \(c>1\), the graph of \(f(cx)\) is the graph of \(f(x)\) compressed horizontally. If \(0<c<1\), the graph of \(f(cx)\) is the graph of \(f(x)\) stretched horizontally. For example, consider the function \(f(x)=\sqrt{2x}\) and evaluate \(f\) at \(x/2\). Since \(f(x/2)=\sqrt{x}\), the graph of \(f(x)=\sqrt{2x}\) is the graph of \(y=\sqrt{x}\) compressed horizontally. The graph of \(y=\sqrt{x/2}\) is a horizontal stretch of the graph of \(y=\sqrt{x}\) (Figure \(\PageIndex{12}\)).

    An image of two graphs. Both graphs have an x axis that runs from -2 to 4 and a y axis that runs from -2 to 5. The first graph is labeled “a” and is of two functions. The first graph is of two functions. The first function is “f(x) = square root of x”, which is a curved function that begins at the origin and increases. The second function is “f(x) = square root of 2x”, which is a curved function that begins at the origin and increases, but increases at a faster rate than the first function. The second graph is labeled “b” and is of two functions. The first function is “f(x) = square root of x”, which is a curved function that begins at the origin and increases. The second function is “f(x) = square root of (x/2)”, which is a curved function that begins at the origin and increases, but increases at a slower rate than the first function.
    Figure \(\PageIndex{12}\): (a) If \(c>1\), the graph of \(y=f(cx)\) is a horizontal compression of the graph of \(y=f(x)\). (b) If \(0<c<1\), the graph of \(y=f(cx)\) is a horizontal stretch of the graph of \(y=f(x)\).

    We have explored what happens to the graph of a function \(f\) when we multiply \(f\) by a constant \(c>0\) to get a new function \(cf(x)\). We have also discussed what happens to the graph of a function \(f\)when we multiply the independent variable \(x\) by \(c>0\) to get a new function \(f(cx)\). However, we have not addressed what happens to the graph of the function if the constant \(c\) is negative. If we have a constant \(c<0\), we can write \(c\) as a positive number multiplied by \(−1\); but, what kind of transformation do we get when we multiply the function or its argument by \(−1?\) When we multiply all the outputs by \(−1\), we get a reflection about the \(x\)-axis. When we multiply all inputs by \(−1\), we get a reflection about the \(y\)-axis. For example, the graph of \(f(x)=−(x^3+1)\) is the graph of \(y=(x^3+1)\) reflected about the \(x\)-axis. The graph of \(f(x)=(−x)^3+1\) is the graph of \(y=x^3+1\) reflected about the \(y\)-axis (Figure \(\PageIndex{13}\)).

    An image of two graphs. Both graphs have an x axis that runs from -3 to 3 and a y axis that runs from -5 to 6. The first graph is labeled “a” and is of two functions. The first graph is of two functions. The first function is “f(x) = x cubed + 1”, which is a curved increasing function that has an x intercept at (-1, 0) and a y intercept at (0, 1). The second function is “f(x) = -(x cubed + 1)”, which is a curved decreasing function that has an x intercept at (-1, 0) and a y intercept at (0, -1). The second graph is labeled “b” and is of two functions. The first function is “f(x) = x cubed + 1”, which is a curved increasing function that has an x intercept at (-1, 0) and a y intercept at (0, 1). The second function is “f(x) = (-x) cubed + 1”, which is a curved decreasing function that has an x intercept at (1, 0) and a y intercept at (0, 1). The first function increases at the same rate the second function decreases for the same values of x.
    Figure \(\PageIndex{13}\): (a) The graph of \(y=−f(x)\) is the graph of \(y=f(x)\) reflected about the \(x\)-axis. (b) The graph of \(y=f(−x)\) is the graph of \(y=f(x)\) reflected about the \(y\)-axis.

    If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the correct order. Given a function \(f(x)\), the graph of the related function \(y=cf(a(x+b))+d\) can be obtained from the graph of \(y=f(x)\)by performing the transformations in the following order.

    • Horizontal shift of the graph of \(y=f(x)\). If \(b>0\), shift left. If \(b<0\) shift right.
    • Horizontal scaling of the graph of \(y=f(x+b)\) by a factor of \(|a|\). If \(a<0\), reflect the graph about the \(y\)-axis.
    • Vertical scaling of the graph of \(y=f(a(x+b))\) by a factor of \(|c|\). If \(c<0\), reflect the graph about the \(x\) -axis.
    • Vertical shift of the graph of \(y=cf(a(x+b))\). If \(d>0\), shift up. If \(d<0\), shift down.

    We can summarize the different transformations and their related effects on the graph of a function in the following table.

    Transformation of \(f (c>0)\) Effect of the graph of \(f\)
    \(f(x)+c\) Vertical shift up \(c\) units
    \(f(x)-c\) Vertical shift down \(c\) units
    \(f(x+c)\) Shift left by \(c\) units
    \(f(x-c)\) Shift right by \(c\) units
    \(cf(x)\)

    Vertical stretch if \(c>1\);

    vertical compression if \(0<c<1\)

    \(f(cx)\)

    Horizontal stretch if \(0<c<1\);

    horizontal compression if \(c>1\)

    \(-f(x)\) Reflection about the \(x\)-axis
    \(f(-x)\) Reflection about the \(y\)-axis
    Example \(\PageIndex{10}\): Transforming a Function

    For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-known function.

    1. \(f(x)=−|x+2|−3\)
    2. \(f(x)=3\sqrt{-x}+1\)

    Solution

    1.Starting with the graph of \(y=|x|\), shift \(2\) units to the left, reflect about the \(x\)-axis, and then shift down \(3\) units.

    An image of a graph. The x axis runs from -7 to 7 and a y axis runs from -7 to 7. The graph contains four functions. The first function is “f(x) = absolute value of x” and is labeled starting function. It decreases in a straight line until the origin and then increases in a straight line again after the origin. The second function is “f(x) = absolute value of (x + 2)”, which decreases in a straight line until the point (-2, 0) and then increases in a straight line again after the point (-2, 0). The second function is the same shape as the first function, but is shifted left 2 units. The third function is “f(x) = -(absolute value of (x + 2))”, which increases in a straight line until the point (-2, 0) and then decreases in a straight line again after the point (-2, 0). The third function is the second function reflected about the x axis. The fourth function is “f(x) = -(absolute value of (x + 2)) - 3” and is labeled “transformed function”. It increases in a straight line until the point (-2, -3) and then decreases in a straight line again after the point (-2, -3). The fourth function is the third function shifted down 3 units.
    Figure \(\PageIndex{14}\): The function \(f(x)=−|x+2|−3\) can be viewed as a sequence of three transformations of the function \(y=|x|\).

    2. Starting with the graph of \(y=\sqrt{x},\) reflect about the \(y\)-axis, stretch the graph vertically by a factor of 3, and move up 1 unit.

    An image of a graph. The x axis runs from -7 to 7 and a y axis runs from -2 to 10. The graph contains four functions. The first function is “f(x) = square root of x” and is labeled starting function. It is a curved function that begins at the origin and increases. The second function is “f(x) = square root of -x”, which is a curved function that decreases until it reaches the origin, where it stops. The second function is the first function reflected about the y axis. The third function is “f(x) = 3(square root of -x)”, which is a curved function that decreases until it reaches the origin, where it stops. The third function decreases at a quicker rate than the second function. The fourth function is “f(x) = 3(square root of -x) + 1” and is labeled “transformed function”. Itis a curved function that decreases until it reaches the point (0, 1), where it stops. The fourth function is the third function shifted up 1 unit.
    Figure \(\PageIndex{15}\): The function \(f(x)=3\sqrt{-x}+1\)can be viewed as a sequence of three transformations of the function \(y=\sqrt{x}\).
    Exercise \(\PageIndex{7}\)

    Describe how the function \(f(x)=−(x+1)^2−4\) can be graphed using the graph of \(y=x^2\) and a sequence of transformations

    Answer

    Shift the graph \(y=x^2\) to the left 1 unit, reflect about the \(x\)-axis, then shift down 4 units.

    Analyzing Parabolas

    The graph of a quadratic function is a U-shaped curve called a parabola. One important feature of the graph is that it has an extreme point, called the vertex. If the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. If the parabola opens down, the vertex represents the highest point on the graph, or the maximum value. In either case, the vertex is a turning point on the graph. The graph is also symmetric with a vertical line drawn through the vertex, called the axis of symmetry. These features are illustrated in Figure \(\PageIndex{2}\).

    alt
    Figure \(\PageIndex{2}\): Graph of a parabola showing where the \(x\) and \(y\) intercepts, vertex, and axis of symmetry are.

    The y-intercept is the point at which the parabola crosses the \(y\)-axis. The x-intercepts are the points at which the parabola crosses the \(x\)-axis. If they exist, the x-intercepts represent the zeros, or roots, of the quadratic function, the values of \(x\) at which \(y=0\).

    Definitions: Forms of Quadratic Functions

    A quadratic function is a function of degree two. The graph of a quadratic function is a parabola.

    • The general form of a quadratic function is \(f(x)=ax^2+bx+c\) where \(a\), \(b\), and \(c\) are real numbers and \(a{\neq}0\).
    • The standard form of a quadratic function is \(f(x)=a(x−h)^2+k\).
    • The vertex \((h,k)\) is located at \[h=–\dfrac{b}{2a},\;k=f(h)=f(\dfrac{−b}{2a}).\]

    altGiven a quadratic function in general form, find the vertex of the parabola.

    1. Identify \(a\), \(b\), and \(c\).
    2. Find \(h\), the x-coordinate of the vertex, by substituting \(a\) and \(b\) into \(h=–\frac{b}{2a}\).
    3. Find \(k\), the y-coordinate of the vertex, by evaluating \(k=f(h)=f\Big(−\frac{b}{2a}\Big)\).
    Example \(\PageIndex{8}\): Finding the Vertex of a Quadratic Function

    Find the vertex of the quadratic function \(f(x)=2x^2–6x+7\). Rewrite the quadratic in standard form (vertex form).

    Solution

    The horizontal coordinate of the vertex will be at

    \[\begin{align} h&=–\dfrac{b}{2a} \\ &=-\dfrac{-6}{2(2)} \\ &=\dfrac{6}{4} \\ &=\dfrac{3}{2}\end{align}\]

    The vertical coordinate of the vertex will be at

    \[\begin{align} k&=f(h) \\ &=f\Big(\dfrac{3}{2}\Big) \\ &=2\Big(\dfrac{3}{2}\Big)^2−6\Big(\dfrac{3}{2}\Big)+7 \\ &=\dfrac{5}{2} \end{align}\]

    Rewriting into standard form, the stretch factor will be the same as the \(a\) in the original quadratic.

    \[f(x)=ax^2+bx+c \\ f(x)=2x^2−6x+7\]

    Using the vertex to determine the shifts,

    \[f(x)=2\Big(x–\dfrac{3}{2}\Big)^2+\dfrac{5}{2}\]

    Analysis

    One reason we may want to identify the vertex of the parabola is that this point will inform us what the maximum or minimum value of the function is, \((k)\),and where it occurs, \((h)\).

    Exercise \(\PageIndex{8}\)

    Given the equation \(g(x)=13+x^2−6x\), write the equation in general form and then in standard form.

    Answer

    \(g(x)=x^2−6x+13\) in general form; \(g(x)=(x−3)^2+4\) in standard form.

    Finding the Domain and Range of a Quadratic Function

    Any number can be the input value of a quadratic function. Therefore, the domain of any quadratic function is all real numbers. Because parabolas have a maximum or a minimum point, the range is restricted. Since the vertex of a parabola will be either a maximum or a minimum, the range will consist of all y-values greater than or equal to the y-coordinate at the turning point or less than or equal to the y-coordinate at the turning point, depending on whether the parabola opens up or down.

    Definition: Domain and Range of a Quadratic Function

    The domain of any quadratic function is all real numbers.

    The range of a quadratic function written in general form \(f(x)=ax^2+bx+c\) with a positive \(a\) value is \(f(x){\geq}f ( −\frac{b}{2a}\Big)\), or \([ f(−\frac{b}{2a}),∞ ) \); the range of a quadratic function written in general form with a negative a value is \(f(x) \leq f(−\frac{b}{2a})\), or \((−∞,f(−\frac{b}{2a})]\).

    The range of a quadratic function written in standard form \(f(x)=a(x−h)^2+k\) with a positive \(a\) value is \(f(x) \geq k;\) the range of a quadratic function written in standard form with a negative \(a\) value is \(f(x) \leq k\).

    altGiven a quadratic function, find the domain and range.

    1. Identify the domain of any quadratic function as all real numbers.
    2. Determine whether \(a\) is positive or negative. If \(a\) is positive, the parabola has a minimum. If \(a\) is negative, the parabola has a maximum.
    3. Determine the maximum or minimum value of the parabola, \(k\).
    4. If the parabola has a minimum, the range is given by \(f(x){\geq}k\), or \(\left[k,\infty\right)\). If the parabola has a maximum, the range is given by \(f(x){\leq}k\), or \(\left(−\infty,k\right]\).
    Example \(\PageIndex{9}\): Finding the Domain and Range of a Quadratic Function

    Find the domain and range of \(f(x)=−5x^2+9x−1\).

    Solution

    As with any quadratic function, the domain is all real numbers.

    Because \(a\) is negative, the parabola opens downward and has a maximum value. We need to determine the maximum value. We can begin by finding the x-value of the vertex.

    \[\begin{align} h&=−\dfrac{b}{2a} \\ &=−\dfrac{9}{2(-5)} \\ &=\dfrac{9}{10} \end{align}\]

    The maximum value is given by \(f(h)\).

    \[\begin{align} f(\dfrac{9}{10})&=5(\dfrac{9}{10})^2+9(\dfrac{9}{10})-1 \\&= \dfrac{61}{20}\end{align}\]

    The range is \(f(x){\leq}\frac{61}{20}\), or \(\left(−\infty,\frac{61}{20}\right]\).

    Exercise \(\PageIndex{9}\)

    Find the domain and range of \(f(x)=2\Big(x−\frac{4}{7}\Big)^2+\frac{8}{11}\).

    Answer

    The domain is all real numbers. The range is \(f(x){\geq}\frac{8}{11}\), or \(\left[\frac{8}{11},\infty\right)\).

    Finding the x- and y-Intercepts of a Quadratic Function

    Much as we did in the application problems above, we also need to find intercepts of quadratic equations for graphing parabolas. Recall that we find the y-intercept of a quadratic by evaluating the function at an input of zero, and we find the x-intercepts at locations where the output is zero. Notice in Figure \(\PageIndex{13}\) that the number of x-intercepts can vary depending upon the location of the graph.

    <div data-mt-source="1"><p class=
    Figure \(\PageIndex{13}\): Number of x-intercepts of a parabola.

    altGiven a quadratic function \(f(x)\), find the y- and x-intercepts.

    1. Evaluate \(f(0)\) to find the y-intercept.
    2. Solve the quadratic equation \(f(x)=0\) to find the x-intercepts.
    Example \(\PageIndex{10}\): Finding the y- and x-Intercepts of a Parabola

    Find the y- and x-intercepts of the quadratic \(f(x)=3x^2+5x−2\).

    Solution

    We find the y-intercept by evaluating \(f(0)\).

    \[\begin{align} f(0)&=3(0)^2+5(0)−2 \\ &=−2 \end{align}\]

    So the y-intercept is at \((0,−2)\).

    For the x-intercepts, we find all solutions of \(f(x)=0\).

    \[0=3x^2+5x−2\]

    In this case, the quadratic can be factored easily, providing the simplest method for solution.

    \[0=(3x−1)(x+2)\]

    \[\begin{align} 0&=3x−1 & 0&=x+2 \\ x&= \frac{1}{3} &\text{or} \;\;\;\;\;\;\;\; x&=−2 \end{align}\]

    So the x-intercepts are at \((\frac{1}{3},0)\) and \((−2,0)\).

    Analysis

    By graphing the function, we can confirm that the graph crosses the \(y\)-axis at \((0,−2)\). We can also confirm that the graph crosses the x-axis at \(\Big(\frac{1}{3},0\Big)\) and \((−2,0)\). See Figure \(\PageIndex{14}\).

    Graph of a parabola which has the following intercepts (-2, 0), (1/3, 0), and (0, -2).
    Figure \(\PageIndex{14}\): Graph of a parabola.

    Rewriting Quadratics in Standard Form

    In Example \(\PageIndex{7}\), the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored. We can solve these quadratics by first rewriting them in standard form.

    altGiven a quadratic function, find the x-intercepts by rewriting in standard form.

    1. Substitute a and \(b\) into \(h=−\frac{b}{2a}\).
    2. Substitute \(x=h\) into the general form of the quadratic function to find \(k\).
    3. Rewrite the quadratic in standard form using \(h\) and \(k\).
    4. Solve for when the output of the function will be zero to find the x-intercepts.
    Example \(\PageIndex{11}\): Finding the x-Intercepts of a Parabola

    Find the x-intercepts of the quadratic function \(f(x)=2x^2+4x−4\).

    Solution

    We begin by solving for when the output will be zero.

    \[0=2x^2+4x−4 \nonumber\]

    Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic in standard form.

    \[f(x)=a(x−h)^2+k\nonumber\]

    We know that \(a=2\). Then we solve for \(h\) and \(k\).

    \[\begin{align*} h&=−\dfrac{b}{2a} & k&=f(−1) \\ &=−\dfrac{4}{2(2)} & &=2(−1)^2+4(−1)−4 \\ &=−1 & &=−6 \end{align*}\]

    So now we can rewrite in standard form.

    \[f(x)=2(x+1)^2−6\nonumber\]

    We can now solve for when the output will be zero.

    \[\begin{align*} 0&=2(x+1)^2−6 \\ 6&=2(x+1)^2 \\ 3&=(x+1)^2 \\ x+1&={\pm}\sqrt{3} \\ x&=−1{\pm}\sqrt{3} \end{align*}\]

    The graph has x-intercepts at \((−1−\sqrt{3},0)\) and \((−1+\sqrt{3},0)\).

    Analysis

    We can check our work by graphing the given function on a graphing utility and observing the x-intercepts. See Figure \(\PageIndex{15}\).

    Graph of a parabola which has the following x-intercepts (-2.732, 0) and (0.732, 0).
    Figure \(\PageIndex{15}\): Graph of a parabola which has the following x-intercepts: \((-2.732, 0)\) and \((0.732, 0)\).
    Exercise \(\PageIndex{11}\)

    In Try It \(\PageIndex{1}\), we found the standard and general form for the function \(g(x)=13+x^2−6x\). Now find the y- and x-intercepts (if any).

    Answer

    y-intercept at \((0, 13)\), No x-intercepts

    Example \(\PageIndex{12}\): Solving a Quadratic Equation with the Quadratic Formula

    Solve \(x^2+x+2=0\).

    Solution

    Let’s begin by writing the quadratic formula: \(x=\frac{−b{\pm}\sqrt{b^2−4ac}}{2a}\).

    When applying the quadratic formula, we identify the coefficients \(a\), \(b\) and \(c\). For the equation \(x^2+x+2=0\), we have \(a=1\), \(b=1\), and \(c=2\). Substituting these values into the formula we have:

    \[\begin{align*} x&=\dfrac{−b{\pm}\sqrt{b^2−4ac}}{2a} \\ &=\dfrac{−1{\pm}\sqrt{1^2−4⋅1⋅(2)}}{2⋅1} \\ &=\dfrac{−1{\pm}\sqrt{1−8}}{2} \\ &=\dfrac{−1{\pm}\sqrt{−7}}{2} \\ &=\dfrac{−1{\pm}i\sqrt{7}}{2} \end{align*}\]

    The solutions to the equation are \(x=\frac{−1+i\sqrt{7}}{2}\) and \(x=\frac{−1-i\sqrt{7}}{2}\) or \(x=−\frac{1}{2}+\frac{i\sqrt{7}}{2}\) and \(x=\frac{-1}{2}−\frac{i\sqrt{7}}{2}\).

    Example \(\PageIndex{13}\): Applying the Vertex and x-Intercepts of a Parabola

    A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height above ground can be modeled by the equation \(H(t)=−16t^2+80t+40\).

    When does the ball reach the maximum height?
    What is the maximum height of the ball?
    When does the ball hit the ground?

    The ball reaches the maximum height at the vertex of the parabola.
    \[\begin{align} h &= −\dfrac{80}{2(−16)} \\ &=\dfrac{80}{32} \\ &=\dfrac{5}{2} \\ & =2.5 \end{align}\]

    The ball reaches a maximum height after 2.5 seconds.

    To find the maximum height, find the y-coordinate of the vertex of the parabola.
    \[\begin{align} k &=H(−\dfrac{b}{2a}) \\ &=H(2.5) \\ &=−16(2.5)^2+80(2.5)+40 \\ &=140 \end{align}\]

    The ball reaches a maximum height of 140 feet.

    To find when the ball hits the ground, we need to determine when the height is zero, \(H(t)=0\).

    We use the quadratic formula.

    \[\begin{align} t & =\dfrac{−80±\sqrt{80^2−4(−16)(40)}}{2(−16)} \\ & = \dfrac{−80±\sqrt{8960}}{−32} \end{align} \]

    Because the square root does not simplify nicely, we can use a calculator to approximate the values of the solutions.

    \[t=\dfrac{−80-\sqrt{8960}}{−32} ≈5.458 \text{ or }t=\dfrac{−80+\sqrt{8960}}{−32} ≈−0.458 \]

    The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground after about 5.458 seconds. See Figure \(\PageIndex{16}\).

    CNX_Precalc_Figure_03_02_016.jpg
    Figure \(\PageIndex{16}\)

    alt \(\PageIndex{13}\): A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of 96 feet per second. The rock’s height above ocean can be modeled by the equation \(H(t)=−16t^2+96t+112\).

    1. When does the rock reach the maximum height?
    2. What is the maximum height of the rock?
    3. When does the rock hit the ocean?

    Solution

    a. 3 seconds b. 256 feet c. 7 seconds


    This page titled 1.2: Basic Classes of Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gilbert Strang & Edwin “Jed” Herman (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.