8.5E: Exercises - Bayes' Formula

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

PROBLEM SET: BAYES' FORMULA

 Jar I contains five red and three white marbles, and Jar II contains four red and two white marbles. A jar is picked at random and a marble is drawn. Draw a tree diagram below, and find the following probabilities. P(marble is red) P(It came from Jar II | marble is white) P(Red | Jar I) In Mr. Symons' class, if a student does homework most days, the chance of passing the course is 90%. On the other hand, if a student does not do homework most days, the chance of passing the course is only 20%. H = event that the student did homework C = event that the student passed the course Mr. Symons claims that 80% of his students do homework on a regular basis. If a student is chosen at random from Mr. Symons' class, find the following probabilities. P(C) P(H|C) P(C|H) A city has 60% Democrats, and 40% Republicans. In the last mayoral election, 60% of the Democrats voted for their Democratic candidate while 95% of the Republicans voted for their candidate. Which party's mayor runs city hall? In a certain population of 48% men and 52% women, 56% of the men and 8% of the women are color-blind. What percent of the people are color-blind? If a person is found to be color-blind, what is the probability that the person is a male? A test for a certain disease gives a positive result 95% of the time if the person actually carries the disease. However, the test also gives a positive result 3% of the time when the individual is not carrying the disease. It is known that 10% of the population carries the disease. If a person tests positive, what is the probability that he or she has the disease? A person has two coins: a fair coin and a two-headed coin. A coin is selected at random, and tossed. If the coin shows a head, what is the probability that the coin is fair? A computer company buys its chips from three different manufacturers. Manufacturer I provides 60% of the chips and is known to produce 5% defective; Manufacturer II supplies 30% of the chips and makes 4% defective; while the rest are supplied by Manufacturer III with 3% defective chips. If a chip is chosen at random, find the following probabilities: P(the chip is defective) P(chip is from Manufacturer II | defective) P(defective |chip is from manufacturer III) Lincoln Union High School District is made up of three high schools: Monterey, Fremont, and Kennedy, with an enrollment of 500, 300, and 200, respectively. On a given day, the percentage of students absent at Monterey High School is 6%, at Fremont 4%, and at Kennedy 5%. If a student is chosen at random, find the probabilities below: Hint: Convert the enrollments into percentages. P(the student is absent) P(student is from Kennedy | student is absent) P(student is absent | student is from Fremont) 9. At a retail store, 20% of customers use the store’s online app to assist them when shopping in the store ; 80% of store shoppers don’t use the app. Of those customers that use the online app while in the store, 50% are very satisfied with their purchases, 40% are moderately satisfied, and 10% are dissatisfied. Of those customers that do not use the online app while in the store, 30% are very satisfied with their purchases, 50% are moderately satisfied and 20% are dissatisfied. Indicate the events by the following: A = shopper uses the app in the store N = shopper does not use the app in the store V = very satisfied with purchase M = moderately satisfied D = dissatisfied a. Find P(A and D), the probability that a store customer uses the app and is dissatisfied b. Find P(A|D), the probability that a store customer uses the app if the customer is dissatisfied. 10. A medical clinic uses a pregnancy test to confirm pregnancy in patients who suspect they are pregnant. Historically data has shown that overall, 70% of the women at this clinic who are given the pregnancy test are pregnant, but 30% are not. The test's manufacturer indicates that if a woman is pregnant, the test will be positive 92% of the time. But if a woman is not pregnant, the test will be positive only 2% of the time and will be negative 98% of the time. a. Find the probability that a woman at this clinic is pregnant and tests positive. b. Find the probability that a woman at this clinic is actually pregnant given that she tests positive.

This page titled 8.5E: Exercises - Bayes' Formula is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Rupinder Sekhon and Roberta Bloom via source content that was edited to the style and standards of the LibreTexts platform.