Skip to main content

# 5.7: Chapter 5 Review Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In exercises 1 - 4, answer True or False. Justify your answer with a proof or a counterexample. Assume all functions $$f$$ and $$g$$ are continuous over their domains.

1) If $$f(x)>0,\;f′(x)>0$$ for all $$x$$, then the right-hand rule underestimates the integral $$\displaystyle ∫^b_af(x)\,dx.$$ Use a graph to justify your answer.

Answer
False

2) $$\displaystyle ∫^b_af(x)^2\,dx=∫^b_af(x)\,dx$$

3) If $$f(x)≤g(x)$$ for all $$x∈[a,b]$$, then $$\displaystyle ∫^b_af(x)\,dx≤∫^b_ag(x)\,dx.$$

Answer
True

4) All continuous functions have an antiderivative.

In exercises 5 - 8, evaluate the Riemann sums $$L_4$$ and $$R_4$$ for the given functions over the specified interval. Compare your answer with the exact answer, when possible, or use a calculator to determine the answer.

5) $$y=3x^2−2x+1)$$ over $$[−1,1]$$

Answer
$$L_4=5.25, \;R_4=3.25,$$ exact answer: 4

6) $$y=\ln(x^2+1)$$ over $$[0,e]$$

7) $$y=x^2\sin x$$ over $$[0,π]$$

Answer
$$L_4=5.364,\;R_4=5.364,$$ exact answer: $$5.870$$

8) $$y=\sqrt{x}+\frac{1}{x}$$ over $$[1,4]$$

In exercises 9 - 12, evaluate the integrals.

9) $$\displaystyle ∫^1_{−1}(x^3−2x^2+4x)\,dx$$

Answer
$$−\frac{4}{3}$$

10) $$\displaystyle ∫^4_0\frac{3t}{\sqrt{1+6t^2}}\,dt$$

11) $$\displaystyle ∫^{π/2}_{π/3}2\sec(2θ)\tan(2θ)\,dθ$$

Answer
$$1$$

12) $$\displaystyle ∫^{π/4}_0e^{\cos^2x}\sin x\cos x\,dx$$

In exercises 13 - 16, find the antiderivative.

13) $$\displaystyle ∫\frac{dx}{(x+4)^3}$$

Answer
$$−\dfrac{1}{2(x+4)^2}+C$$

14) $$\displaystyle ∫x\ln(x^2)\,dx$$

15) $$\displaystyle ∫\frac{4x^2}{\sqrt{1−x^6}}\,dx$$

Answer
$$\displaystyle \frac{4}{3}\sin^{−1}(x^3)+C$$

16) $$\displaystyle ∫\frac{e^{2x}}{1+e^{4x}}\,dx$$

In exercises 17 - 20, find the derivative.

17) $$\displaystyle \frac{d}{dt}∫^t_0\frac{\sin x}{\sqrt{1+x^2}}\,dx$$

Answer
$$\dfrac{\sin t}{\sqrt{1+t^2}}$$

18) $$\displaystyle \frac{d}{dx}∫^{x^3}_1\sqrt{4−t^2}\,dt$$

19) $$\displaystyle \frac{d}{dx}∫^{\ln(x)}_1(4t+e^t)\,dt$$

Answer
$$4\dfrac{\ln x}{x}+1$$

20) $$\displaystyle \frac{d}{dx}∫^{\cos x}_0e^{t^2}\,dt$$

In exercises 21 - 23, consider the historic average cost per gigabyte of RAM on a computer.

 Year 5-Year Change ($) 1980 $$0$$ 1985 $$−5,468,750$$ 1990 $$-755,495$$ 1995 $$−73,005$$ 2000 $$−29,768$$ 2005 $$−918$$ 2010 $$−177$$ 21) If the average cost per gigabyte of RAM in 2010 is $$12$$, find the average cost per gigabyte of RAM in 1980. Answer $$6,328,113$$ Solution:$6,328,113

22) The average cost per gigabyte of RAM can be approximated by the function $$C(t)=8,500,000(0.65)^t$$, where $$t$$ is measured in years since 1980, and $$C$$ is cost in US dollars. Find the average cost per gigabyte of RAM for the period from 1980 to 2010.

23) Find the average cost of $$1$$ GB RAM from 2005 to 2010.

Answer
$$73.36$$

24) The velocity of a bullet from a rifle can be approximated by $$v(t)=6400t^2−6505t+2686,$$ where $$t$$ is seconds after the shot and v is the velocity measured in feet per second. This equation only models the velocity for the first half-second after the shot: $$0≤t≤0.5.$$ What is the total distance the bullet travels in $$0.5$$ sec?

25) What is the average velocity of the bullet for the first half-second?

Answer
$$\frac{19117}{12}$$ ft/sec, or about $$1593$$ ft/sec

This page titled 5.7: Chapter 5 Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by Zoya Kravets.

• Was this article helpful?