6.0: A- Table of Derivatives

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

General Formulas

1. $$\quad \dfrac{d}{dx}\left(c\right)=0$$

2. $$\quad \dfrac{d}{dx}\left(f(x)+g(x)\right)=f′(x)+g′(x)$$

3. $$\quad \dfrac{d}{dx}\left(f(x)g(x)\right)=f′(x)g(x)+f(x)g′(x)$$

4. $$\quad \dfrac{d}{dx}\left(x^n\right)=nx^{n−1},\quad \text{for real numbers }n$$

5. $$\quad \dfrac{d}{dx}\left(cf(x)\right)=cf′(x)$$

6. $$\quad \dfrac{d}{dx}\left(f(x)−g(x)\right)=f′(x)−g′(x)$$

7. $$\quad \dfrac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)=\dfrac{g(x)f′(x)−f(x)g′(x)}{(g(x))^2}$$

8. $$\quad \dfrac{d}{dx}\left[f(g(x))\right]=f′(g(x))·g′(x)$$

Trigonometric Functions

9. $$\quad \dfrac{d}{dx}\left(\sin x\right)=\cos x$$

10. $$\quad \dfrac{d}{dx}\left(\tan x\right)=\sec^2x$$

11. $$\quad \dfrac{d}{dx}\left(\sec x\right)=\sec x\tan x$$

12. $$\quad \dfrac{d}{dx}\left(\cos x\right)=−\sin x$$

13. $$\quad \dfrac{d}{dx}\left(\cot x\right)=−\csc^2x$$

14. $$\quad \dfrac{d}{dx}\left(\csc x\right)=−\csc x\cot x$$

Inverse Trigonometric Functions

15. $$\quad \dfrac{d}{dx}\left(\sin^{-1}x\right)=\dfrac{1}{\sqrt{1−x^2}}$$

16. $$\quad \dfrac{d}{dx}\left(\tan^{-1}x\right)=\dfrac{1}{1+x^2}$$

17. $$\quad \dfrac{d}{dx}\left(\sec^{-1}x\right)=\dfrac{1}{|x|\sqrt{x^2−1}}$$

18. $$\quad \dfrac{d}{dx}\left(\cos^{-1}x\right)=\dfrac{-1}{\sqrt{1−x^2}}$$

19. $$\quad \dfrac{d}{dx}\left(\cot^{-1}x\right)=\dfrac{-1}{1+x^2}$$

20. $$\quad \dfrac{d}{dx}\left(\csc^{-1}x\right)=\dfrac{-1}{|x|\sqrt{x^2−1}}$$

Exponential and Logarithmic Functions

21. $$\quad \dfrac{d}{dx}\left(e^x\right)=e^x$$

22. $$\quad \dfrac{d}{dx}\left(\ln|x|\right)=\dfrac{1}{x}$$

23. $$\quad \dfrac{d}{dx}\left(b^x\right)=b^x\ln b$$

24. $$\quad \dfrac{d}{dx}\left(\log_bx\right)=\dfrac{1}{x\ln b}$$

Hyperbolic Functions

25. $$\quad \dfrac{d}{dx}\left(\sinh x\right)=\cosh x$$

26. $$\quad \dfrac{d}{dx}\left(\tanh x\right)=\text{sech}^2 \,x$$

27. $$\quad \dfrac{d}{dx}\left(\text{sech} x\right)=−\text{sech} \,x\tanh x$$

28. $$\quad \dfrac{d}{dx}\left(\cosh x\right)=\sinh x$$

29. $$\quad \dfrac{d}{dx}\left(\coth x\right)=−\text{csch}^2 \,x$$

30. $$\quad \dfrac{d}{dx}\left(\text{csch} \,x\right)=−\text{csch} x\coth x$$

Inverse Hyperbolic Functions

31. $$\quad \dfrac{d}{dx}\left(\sinh^{-1}x\right)=\dfrac{1}{\sqrt{x^2+1}}$$

32. $$\quad \dfrac{d}{dx}\left(\tanh^{-1}x\right)=\dfrac{1}{1-x^2}\quad (|x|<1)$$

33. $$\quad \dfrac{d}{dx}\left(\text{sech}^{-1}\,x\right)=\dfrac{-1}{x\sqrt{1-x^2}}\quad (0<x<1)$$

34. $$\quad \dfrac{d}{dx}\left(\cosh^{-1}x\right)=\dfrac{1}{\sqrt{x^2-1}}\quad (x>1)$$

35. $$\quad \dfrac{d}{dx}\left(\coth^{-1}x\right)=\dfrac{1}{1-x^2}\quad (|x|>1)$$

36. $$\quad \dfrac{d}{dx}\left(\text{csch}^{−1}\,x\right)=\dfrac{-1}{|x|\sqrt{1+x^2}}\quad (x≠0)$$

This page titled 6.0: A- Table of Derivatives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Zoya Kravets via source content that was edited to the style and standards of the LibreTexts platform.