11.4E: Exercises for Section 11.4
- Page ID
- 160360
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In exercises 1 - 7, plot the point whose polar coordinates are given by first constructing the angle \(\theta\) and then marking off the distance \(r\) along the ray.
1) \(\left(3,\frac{π}{6}\right)\)
- Answer
2) \(\left(−2,\frac{5π}{3}\right)\)
3) \(\left(0,\frac{7π}{6}\right)\)
- Answer
4) \(\left(−4,\frac{3π}{4}\right)\)
5) \(\left(1,\frac{π}{4}\right)\)
- Answer
6) \(\left(2,\frac{5π}{6}\right)\)
7) \(\left(1,\frac{π}{2}\right)\)
- Answer
In exercises 8 - 11, consider the polar graph below. Give two sets of polar coordinates for each point.
8) Coordinates of point A.
9) Coordinates of point B.
- Answer
- \(B\left(3,\frac{−π}{3}\right) B\left(−3,\frac{2π}{3}\right)\)
10) Coordinates of point C.
11) Coordinates of point D.
- Answer
- \(D\left(5,\frac{7π}{6}\right) D\left(−5,\frac{π}{6}\right)\)
In exercises 12 - 17, the rectangular coordinates of a point are given. Find two sets of polar coordinates for the point in \((0,2π]\). Round to three decimal places.
12) \((2,2)\)
13) \((3,−4)\)
- Answer
- \((5,−0.927),\;(−5,−0.927+π)\)
14) \((8,15)\)
15) \((−6,8)\)
- Answer
- \((10,−0.927),\;(−10,−0.927+π)\)
16) \((4,3)\)
17) \((3,−\sqrt{3})\)
- Answer
- \((2\sqrt{3},−0.524),\;(−2\sqrt{3},−0.524+π)\)
In exercises 18 - 24, find rectangular coordinates for the given point in polar coordinates.
18) \(\left(2,\frac{5π}{4}\right)\)
19) \(\left(−2,\frac{π}{6}\right)\)
- Answer
- \((−\sqrt{3},−1)\)
20) \(\left(5,\frac{π}{3}\right)\)
21) \(\left(1,\frac{7π}{6}\right)\)
- Answer
- \(\left(−\frac{\sqrt{3}}{2},\frac{−1}{2}\right)\)
22) \(\left(−3,\frac{3π}{4}\right)\)
23) \(\left(0,\frac{π}{2}\right)\)
- Answer
- \((0,0)\)
24) \((−4.5,6.5)\)
In exercises 25 - 29, determine whether the graphs of the polar equation are symmetric with respect to the \(x\)-axis, the \(y\)-axis, or the origin.
25) \(r=3\sin(2θ)\)
- Answer
- Symmetry with respect to the x-axis, y-axis, and origin.
26) \(r^2=9\cos θ\)
27) \(r=\cos\left(\frac{θ}{5}\right)\)
- Answer
- Symmetric with respect to x-axis only.
28) \(r=2\sec θ\)
29) \(r=1+\cos θ\)
- Answer
- Symmetry with respect to x-axis only.
In exercises 30 - 33, describe the graph of each polar equation. Confirm each description by converting into a rectangular equation.
30) \(r=3\)
31) \(θ=\frac{π}{4}\)
- Answer
- Line \(y=x\)
32) \(r=\sec θ\)
33) \(r=\csc θ\)
- Answer
- \(y=1\)
In exercises 34 - 36, convert the rectangular equation to polar form and sketch its graph.
34) \(x^2+y^2=16\)
35) \(x^2−y^2=16\)
- Answer
-
Hyperbola; polar form \(r^2\cos(2θ)=16\) or \(r^2=16\sec θ.\)
36) \(x=8\)
In exercises 37 - 38, convert the rectangular equation to polar form and sketch its graph.
37) \(3x−y=2\)
- Answer
-
\(r=\frac{2}{3\cos θ−\sin θ}\)
38) \(y^2=4x\)
In exercises 39 - 43, convert the polar equation to rectangular form and sketch its graph.
39) \(r=4\sin θ\)
- Answer
- \(x^2+(y-2)^2=4\)
40)
41) \(r=6\cos θ\)
42) \(r=θ\)
- Answer
-
\(x\tan\sqrt{x^2+y^2}=y\)
43) \(r=\cot θ\csc θ\)
In exercises 44 - 54, sketch a graph of the polar equation and identify any symmetry.
44) \(r=1+\sin θ\)
- Answer
-
\(y\)-axis symmetry
45) \(r=3−2\cos θ\)
46) \(r=2−2\sin θ\)
- Answer
-
\(y\)-axis symmetry
47) \(r=5−4\sin θ\)
48) \(r=3\cos(2θ)\)
- Answer
-
\(x\)-and \(y\)-axis symmetry and symmetry about the pole
49) \(r=3\sin(2θ)\)
50) \(r=2\cos(3θ)\)
- Answer
- \(x\)-axis symmetry
51) \(r=3\cos\left(\frac{θ}{2}\right)\)
52) \(r^2=4\cos\left(\frac{2}{θ}\right)\)
- Answer
-
\(x\)-and \(y\)-axis symmetry and symmetry about the pole
53) \(r^2=4\sin θ\)
54) \(r=2θ\)
- Answer
- no symmetry
55) [T] The graph of \(r=2\cos(2θ)\sec(θ).\) is called a strophoid. Use a graphing utility to sketch the graph, and, from the graph, determine the asymptote.
- Answer
- VA at \(x=-2\)

56) [T] Use a graphing utility and sketch the graph of \(r=\dfrac{6}{2\sin θ−3\cos θ}\).
- Answer
- a line
57) [T] Use a graphing utility to graph \(r=\frac{1}{1−\cos θ}\).
58) [T] Use technology to graph \(r=e^{\sin(θ)}−2\cos(4θ)\).
- Answer
- the rare polar butterfly
59) [T] Use technology to plot \(r=\sin(\frac{3θ}{7})\) (use the interval \(0≤θ≤14π\)).
60) Without using technology, sketch the polar curve \(θ=\frac{2π}{3}\).
- Answer
61) [T] Use a graphing utility to plot \(r=θ\sin θ\) for \(−π≤θ≤π\).
62) [T] Use technology to plot \(r=e^{−0.1θ}\) for \(−10≤θ≤10.\)
- Answer
63) [T] There is a curve known as the “Black Hole.” Use technology to plot \(r=e^{−0.01θ}\) for \(−100≤θ≤100\).
64) [T] Use the results of the preceding two problems to explore the graphs of \(r=e^{−0.001θ}\) and \(r=e^{−0.0001θ}\) for \(|θ|>100\).
- Answer
- Answers vary. One possibility is the spiral lines become closer together and the total number of spirals increases.


