2.5E: Exact Equations (Exercises)
- Page ID
- 43279
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q2.5.1
In Exercises 2.5.1-2.5.17 determine which equations are exact and solve them.
1. \(6x^2y^2\,dx+4x^3y\,dy=0\)
2. \((3y\cos x+4xe^x+2x^2e^x)\,dx+(3\sin x+3)\,dy=0\)
3. \(14x^2y^3\,dx+21 x^2y^2\,dy=0\)
4. \((2x-2y^2)\,dx+(12y^2-4xy)\,dy=0\)
5. \((x+y)^2\,dx+(x+y)^2\,dy=0\)
6. \((4x+7y)\,dx+(3x+4y)\,dy=0\)
7. \((-2y^2\sin x+3y^3-2x)\,dx+(4y\cos x+9xy^2)\,dy=0\)
8. \((2x+y)\,dx+(2y+2x)\,dy=0\)
9. \((3x^2+2xy+4y^2)\,dx+(x^2+8xy+18y)\,dy=0\)
10. \((2x^2+8xy+y^2)\,dx+(2x^2+xy^3/3)\,dy=0\)
11. \( {\left({1\over x}+2x\right)\,dx+ \left({1\over y}+2y\right)\,dy=0}\)
12. \((y\sin xy+xy^2\cos xy)\,dx+(x\sin xy+xy^2\cos xy)\,dy=0\)
13. \( {{x\,dx\over(x^2+y^2)^{3/2}}+{y\,dy \over(x^2+y^2)^{3/2}}=0}\)
14. \(\left(e^x(x^2y^2+2xy^2)+6x\right)\,dx+(2x^2ye^x+2)\,dy=0\)
15. \(\left(x^2e^{x^2+y}(2x^2+3)+4x\right)\,dx+(x^3e^{x^2+y}-12y^2)\,dy=0\)
16. \(\left(e^{xy}(x^4y+4x^3)+3y\right)\,dx+(x^5e^{xy}+3x)\,dy=0\)
17. \((3x^2\cos xy-x^3y\sin xy+4x)\,dx+(8y-x^4\sin xy)\,dy=0\)
Q2.5.2
In Exercises 2.5.18-2.5.22 solve the initial value problem.
18. \((4x^3y^2-6x^2y-2x-3)\,dx+(2x^4y-2x^3)\,dy=0,\quad y(1)=3\)
19. \((-4y\cos x+4\sin x\cos x+\sec^2x)\,dx+ (4y-4\sin x)\,dy=0,\quad y(\pi/4)=0\)
20. \((y^3-1)e^x\,dx+3y^2(e^x+1)\,dy=0,\quad y(0)=0\)
21. \((\sin x-y\sin x-2\cos x)\,dx+\cos x\,dy=0,\quad y(0)=1\)
22. \((2x-1)(y-1)\,dx+(x+2)(x-3)\,dy=0,\quad y(1)=-1\)
Q2.5.3
23. Solve the exact equation \[(7x+4y)\,dx+(4x+3y)\,dy=0.\nonumber \] Plot a direction field and some integral curves for this equation on the rectangle \[\{-1\le x\le1,-1\le y\le1\}.\nonumber \]
24. Solve the exact equation \[e^x(x^4y^2+4x^3y^2+1)\,dx+(2x^4ye^x+2y)\,dy=0.\nonumber \] Plot a direction field and some integral curves for this equation on the rectangle \[\{-2\le x\le2,-1\le y\le1\}.\nonumber \]
25. Plot a direction field and some integral curves for the exact equation \[(x^3y^4+x)\,dx+(x^4y^3+y)\,dy=0\nonumber \] on the rectangle \(\{-1\le x\le 1,-1\le y\le1\}\). (See Exercise 2.5.37(a)).
26. Plot a direction field and some integral curves for the exact equation \[(3x^2+2y)\,dx+(2y+2x)\,dy=0\nonumber \] on the rectangle \(\{-2\le x\le 2,-2\le y\le2\}\). (See Exercise 2.5.37(b)).
27.
- Solve the exact equation \[(x^3y^4+2x)\,dx+(x^4y^3+3y)\,dy=0 \tag{A} \] implicitly.
- For what choices of \((x_0,y_0)\) does Theorem 2.3.1 imply that the initial value problem \[(x^3y^4+2x)\,dx+(x^4y^3+3y)\,dy=0,\quad y(x_0)=y_0, \tag{B}\] has a unique solution on an open interval \((a,b)\) that contains \(x_0\)?
- Plot a direction field and some integral curves for (A) on a rectangular region centered at the origin. What is the interval of validity of the solution of (B)?
28.
- Solve the exact equation \[(x^2+y^2)\,dx+2xy\,dy=0 \tag{A} \] implicitly.
- For what choices of \((x_0,y_0)\) does Theorem 2.3.1 imply that the initial value problem \[(x^2+y^2)\,dx+2xy\,dy=0,\quad y(x_0)=y_0, \tag{B} \] has a unique solution \(y=y(x)\) on some open interval \((a,b)\) that contains \(x_0\)?
- Plot a direction field and some integral curves for (A). From the plot determine, the interval \((a,b)\) of b, the monotonicity properties (if any) of the solution of (B), and \(\lim_{x\to a+}y(x)\) and \(\lim_{x\to b-}y(x)\).
29. Find all functions \(M\) such that the equation is exact.
- \(M(x,y)\,dx+(x^2-y^2)\,dy=0\)
- \(M(x,y)\,dx+2xy\sin x\cos y\,dy=0\)
- \(M(x,y)\,dx+(e^x-e^y\sin x)\,dy=0\)
30. Find all functions \(N\) such that the equation is exact.
- \((x^3y^2+2xy+3y^2)\,dx+N(x,y)\,dy=0\)
- \((\ln xy+2y\sin x)\,dx+N(x,y)\,dy=0\)
- \((x\sin x+y\sin y)\,dx+N(x,y)\,dy=0\)
31. Suppose \(M,N,\) and their partial derivatives are continuous on an open rectangle \(R\), and \(G\) is an antiderivative of \(M\) with respect to \(x\); that is, \[{\partial G\over\partial x}=M.\nonumber \] Show that if \(M_y\ne N_x\) in \(R\) then the function \[N-{\partial G\over\partial y}\nonumber \] is not independent of \(x\).
32. Prove: If the equations \(M_1\,dx+N_1\,dy=0\) and \(M_2\, dx+N_2\,dy=0\) are exact on an open rectangle \(R\), so is the equation \[(M_1+M_2)\,dx+(N_1+N_2)\,dy=0.\nonumber \]
33. Find conditions on the constants \(A\), \(B\), \(C\), and \(D\) such that the equation \[(Ax+By)\,dx+(Cx+Dy)\,dy=0\nonumber \] is exact.
34. Find conditions on the constants \(A\), \(B\), \(C\), \(D\), \(E\), and \(F\) such that the equation \[(Ax^2+Bxy+Cy^2)\,dx+(Dx^2+Exy+Fy^2)\,dy=0\nonumber \] is exact.
35. Suppose \(M\) and \(N\) are continuous and have continuous partial derivatives \(M_y\) and \(N_x\) that satisfy the exactness condition \(M_y=N_x\) on an open rectangle \(R\). Show that if \((x,y)\) is in \(R\) and \[F(x,y)=\int^x_{x_0}M(s,y_0)\,ds+\int^y_{y_0}N(x,t)\,dt,\nonumber \] then \(F_x=M\) and \(F_y=N\).
36. Under the assumptions of Exercise 2.5.35, show that \[F(x,y)=\int^y_{y_0}N(x_0,s)\,ds+\int^x_{x_0}M(t,y)\,dt.\nonumber \]
37. Use the method suggested by Exercise 2.5.35, with \((x_0,y_0)=(0,0)\), to solve the these exact equations:
- \((x^3y^4+x)\,dx+(x^4y^3+y)\,dy=0\)
- \((x^2+y^2)\,dx+2xy\,dy=0\)
- \((3x^2+2y)\,dx+(2y+2x)\,dy=0\)
38. Solve the initial value problem \[y'+{2\over x}y=-{2xy\over x^2+2x^2y+1},\quad y(1)=-2.\nonumber \]
39. Solve the initial value problem \[y'-{3\over x}y={2x^4(4x^3-3y)\over3x^5+3x^3+2y},\quad y(1)=1.\nonumber \]
40. Solve the initial value problem \[y'+2xy=-e^{-x^2}\left({3x+2ye^{x^2}\over2x+3ye^{x^2}}\right),\quad y(0)=-1.\nonumber \]