Skip to main content
Mathematics LibreTexts

10.1E: Introduction to Systems of Differential Equations (Exercises)

  • Page ID
    43360
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q10.1.1

    1. Tanks \(T_1\) and \(T_2\) contain 50 gallons and 100 gallons of salt solutions, respectively. A solution with 2 pounds of salt per gallon is pumped into \(T_1\) from an external source at \(1\) gal/min, and a solution with \(3\) pounds of salt per gallon is pumped into \(T_2\) from an external source at \(2\) gal/min. The solution from \(T_1\) is pumped into \(T_2\) at \(3\) gal/min, and the solution from \(T_2\) is pumped into \(T_1\) at \(4\) gal/min. \(T_1\) is drained at \(2\) gal/min and \(T_2\) is drained at \(1\) gal/min. Let \(Q_1(t)\) and \(Q_2(t)\) be the number of pounds of salt in \(T_1\) and \(T_2\), respectively, at time \(t>0\). Derive a system of differential equations for \(Q_1\) and \(Q_2\). Assume that both mixtures are well stirred.

    2. Two 500 gallon tanks \(T_1\) and \(T_2\) initially contain 100 gallons each of salt solution. A solution with \(2\) pounds of salt per gallon is pumped into \(T_1\) from an external source at \(6\) gal/min, and a solution with \(1\) pound of salt per gallon is pumped into \(T_2\) from an external source at \(5\) gal/min. The solution from \(T_1\) is pumped into \(T_2\) at \(2\) gal/min, and the solution from \(T_2\) is pumped into \(T_1\) at \(1\) gal/min. Both tanks are drained at \(3\) gal/min. Let \(Q_1(t)\) and \(Q_2(t)\) be the number of pounds of salt in \(T_1\) and \(T_2\), respectively, at time \(t>0\). Derive a system of differential equations for \(Q_1\) and \(Q_2\) that’s valid until a tank is about to overflow. Assume that both mixtures are well stirred.

    3. A mass \(m_1\) is suspended from a rigid support on a spring \(S_1\) with spring constant \(k_1\) and damping constant \(c_1\). A second mass \(m_2\) is suspended from the first on a spring \(S_2\) with spring constant \(k_2\) and damping constant \(c_2\), and a third mass \(m_3\) is suspended from the second on a spring \(S_3\) with spring constant \(k_3\) and damping constant \(c_3\). Let \(y_1=y_1(t)\), \(y_2=y_2(t)\), and \(y_3=y_3(t)\) be the displacements of the three masses from their equilibrium positions at time \(t\), measured positive upward. Derive a system of differential equations for \(y_1\), \(y_2\) and \(y_3\), assuming that the masses of the springs are negligible and that vertical external forces \(F_1\), \(F_2\), and \(F_3\) also act on the masses.

    4. Let \({\bf X}=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}\) be the position vector of an object with mass \(m\), expressed in terms of a rectangular coordinate system with origin at Earth’s center (Figure 10.1.3). Derive a system of differential equations for \(x\), \(y\), and \(z\), assuming that the object moves under Earth’s gravitational force (given by Newton’s law of gravitation, as in Example 10.1.3) and a resistive force proportional to the speed of the object. Let \(\alpha\) be the constant of proportionality.

    5. Rewrite the given system as a first order system.

    1. \(\begin{array}{lcc} x''' = f(t,x,y,y')\\[4pt] y'' = g(t,y,y') \end{array}\)
    2. \(\begin{array}{lcl} u' = f(t,u,v,v',w')\\[4pt] v''=g(t,u,v,v',w) \\[4pt] w''=h(t,u,v,v',w,w')\end{array}\)
    3. \(y''' = f(t,y,y',y'')\)
    4. \(y^{(4)} = f(t,y)\)
    5. \(\begin{array}{lcc} x'' = f(t,x,y)\\[4pt] y'' = g(t,x,y) \end{array}\)

    6. Rewrite the system Equation 10.1.14 of differential equations derived in Example 10.1.3 as a first order system.

    7. Formulate a version of Euler’s method (Section 3.1) for the numerical solution of the initial value problem \[\begin{array}{rcl} y_1'&=&g_1(t,y_1,y_2),\quad y_1(t_0)=y_{10},\\[4pt] y_2'&=&g_2(t,y_1,y_2),\quad y_2(t_0)=y_{20}, \end{array}\nonumber \] on an interval \([t_0,b]\).

    8. Formulate a version of the improved Euler method (Section 3.2) for the numerical solution of the initial value problem \[\begin{array}{rcl} y_1'&=&g_1(t,y_1,y_2),\quad y_1(t_0)=y_{10},\\[4pt] y_2'&=&g_2(t,y_1,y_2),\quad y_2(t_0)=y_{20}, \end{array}\nonumber \] on an interval \([t_0,b]\).


    This page titled 10.1E: Introduction to Systems of Differential Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Zoya Kravets.

    • Was this article helpful?