# 7.7: A Brief Table of Laplace Transforms

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
Table $$\PageIndex{1}$$
$$\displaystyle f(t)$$ $$\displaystyle F(s)$$
1 $$\displaystyle{ 1\over s}$$ $$\displaystyle (s > 0)$$
$$\displaystyle t^n$$ $$\displaystyle{ n!\over s^{n+1} }$$ $$\displaystyle (s > 0)$$
($$\displaystyle n = \mbox{ integer } > 0$$)
$$\displaystyle t^p,\; p > -1$$ $$\displaystyle{ \Gamma (p+1) \over s^{(p+1)} }$$ $$\displaystyle (s>0)$$
$$\displaystyle e^{at}$$ $$\displaystyle{ 1 \over s-a }$$ $$\displaystyle (s > a)$$
$$\displaystyle t^ne^{at}$$ $$\displaystyle{ n! \over (s-a)^{n+1} }$$ $$\displaystyle (s > 0)$$
($$\displaystyle n= \text{ integer } > 0$$)
$$\displaystyle \cos \omega t$$ $$\displaystyle{ \frac{s}{s^{2}+\omega ^{2}} }$$ $$\displaystyle (s > 0)$$
$$\displaystyle \sin \omega t$$ $${ \displaystyle \omega \over s^2+\omega^2 }$$ $$\displaystyle (s > 0)$$
$$\displaystyle e^{\lambda t} \cos \omega t$$ $$\displaystyle{ s - \lambda \over (s-\lambda)^2+\omega^2 }$$ $$\displaystyle (s > \lambda)$$
$$\displaystyle e^{\lambda t} \sin \omega t$$ $$\displaystyle{ \omega \over (s-\lambda)^2+\omega^2 }$$ $$\displaystyle (s > \lambda)$$
$$\displaystyle \cosh bt$$ $$\displaystyle{ s \over s^2-b^2 }$$ $$\displaystyle (s > |b|)$$
$$\displaystyle \sinh bt$$ $$\displaystyle{ b \over s^2-b^2 }$$ $$\displaystyle (s > |b|)$$
$$\displaystyle t \cos \omega t$$ $$\displaystyle{ s^2-\omega^2 \over (s^2+\omega^2)^2 }$$ $$\displaystyle (s>0)$$
$$\displaystyle t \sin \omega t$$ $$\displaystyle{ 2\omega s \over (s^2+\omega^2)^2 }$$ $$\displaystyle (s>0)$$
$$\displaystyle \sin \omega t -\omega t\cos \omega t$$ $$\displaystyle{ 2\omega^3\over (s^2+\omega^2)^2 }$$ $$\displaystyle (s>0)$$
$$\displaystyle \omega t - \sin \omega t$$ $$\displaystyle{ \omega^3 \over s^2(s^2+\omega^2) }$$ $$\displaystyle (s>0)$$
$$\displaystyle \frac{1}{t}\sin\omega t$$ $$\displaystyle{ \arctan \left({\omega \over s}\right) }$$ $$\displaystyle (s>0)$$
$$\displaystyle e^{at}f(t)$$ $$\displaystyle{ F(s-a) }$$
$$\displaystyle t^kf(t)$$ $$\displaystyle (-1)^{k}F^{(k)}(s)$$
$$\displaystyle f(\omega t)$$ $$\displaystyle{ \frac{1}{\omega}F\left(\frac{s}{\omega } \right), \quad \omega >0 }$$
$$\displaystyle u(t-\tau)$$ $$\displaystyle{ e^{-\tau s} \over s }$$ $$\displaystyle (s>0)$$
$$\displaystyle u(t-\tau)f(t-\tau)\, (\tau > 0)$$ $$\displaystyle{ e^{-\tau s}F(s) }$$
$$\displaystyle \displaystyle {\int^t_o f(\tau)g(t-\tau)\, d\tau}$$ $$\displaystyle{ F(s) \cdot G(s) }$$
$$\displaystyle \delta(t-a)$$ $$\displaystyle{ e^{-as} }$$ $$\displaystyle (s>0)$$

This page titled 7.7: A Brief Table of Laplace Transforms is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.