0.03e: Exercises - Square Roots
- Page ID
- 38222
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Simplify Square Roots
Exercise \(\PageIndex{1}\)
\( \bigstar \) Simplify. (Assume all variable expressions represent positive numbers, so absolute values is not needed.)
|
|
|
|
|
- Answers to Odd Exercises:
-
1. \(3 x \\[6pt]\)
3. \(6 a ^ { 2 }\)5. \(2 a ^ { 3 } \\[6pt]\)
7. \(3 a ^ { 2 } b ^ { 2 } \sqrt { 2 b }\)9. \(7a\\[6pt]\)
11. \(xy\)13. \(6 x \sqrt { 5 x }\\[6pt]\)
15. \(7 a b \sqrt { a }\)17. \(3 x ^ { 2 } y \sqrt { 5 x y }\\[6pt]\)
19. \(8 r s ^ { 3 } t ^ { 2 } \sqrt { t }\)
\( \bigstar \) Simplify. Rationalize denominators. (Assume all variable expressions represent positive numbers, so absolute values is not needed.)
|
|
|
|
|
- Answers to Odd Exercises:
-
21. \( 5 x - 4 \)
23. \( x - 3 \)
25. \( 2x + 3 \)27. \(x + 1\)
29. \(2 ( 3 x - 1 )\)
31. \(-6x \)33. \(- 10 x ^ { 2 } \sqrt { y }\)
35. \(12 a ^ { 3 } b ^ { 2 } \sqrt { a b }\)37. \(\dfrac { 3 x \sqrt { x } } { 5 y }\) 39. \(\dfrac { m ^ { 3 } \sqrt { m } } { 6 n ^ { 2 } }\) 41. \(\dfrac { r s ^ { 2 } \sqrt { 2 s } } { 5 t ^ { 2 } }\)
B: Add and Subtract Square Roots of Constants.
Exercise \(\PageIndex{2}\)
\( \bigstar \) Combine like terms
|
|
|
- Answers to Odd Exercises:
-
45. \(5 \sqrt { 3 }\\[6pt]\)
47. \(14 \sqrt { 3 }\)49. \(- 5 \sqrt { 5 }\\[6pt]\)
51. \(- \sqrt { 6 }\)53. \(8 \sqrt { 7 } - \sqrt { 2 }\\[6pt]\)
55. \(9 \sqrt { 5 } - 4 \sqrt { 3 }\)57. \(- \sqrt { 5 } - 4 \sqrt { 10 }\\[6pt]\)
\( \bigstar \) Simplify and combine like terms
|
|
|
- Answers to Odd Exercises:
-
59. \(3 \sqrt { 3 }\\[6pt]\)
61. \(2 \sqrt { 2 } + 3 \sqrt { 3 }\)63. \(5 \sqrt { 7 } - 5 \sqrt { 3 }\\[6pt]\)
65. \(5 \sqrt { 5 }\)67. \(10 \sqrt { 2 } - 3 \sqrt { 3 }\\[6pt]\)
69. \(2 \sqrt { 3 }\)71. \(23 \sqrt { 3 } - 6 \sqrt { 2 }\\[6pt]\)
73. \(- 8 \sqrt { 2 } + \sqrt { 3 }\)75. \(8 \sqrt { 3 } - 6 \sqrt { 6 }\)
C: Add and Subtract Square Root Expressions.
Exercise \( \PageIndex{3} \)
\( \bigstar \) Add. (Assume all radicands containing variable expressions are positive.)
|
|
|
- Answers to Odd Exercises:
-
79. \(- 3 \sqrt { 2 x }\) 81. \(16 \sqrt { x }\) 83. \(5 x \sqrt { y }\) 85. \(8 \sqrt { a b } - 15 \sqrt { a }\) 87. \(9 \sqrt { x y }\) 89. \(2 \sqrt { 2 x } + 6 \sqrt { 3 x }\)
\( \bigstar \) Simplify and add. (Assume all radicands containing variable expressions are positive.)
|
|
|
- Answers to Odd Exercises:
-
91. \(11 \sqrt { b }\\[6pt]\)
93. \(- 3 a \sqrt { b }\\[6pt]\)
95. \(8 \sqrt { x } - 5 \sqrt { y }\)97. \(20 \sqrt { 2 x } - 12 \sqrt { y }\\[6pt]\)
99. \(- 8 m \sqrt { n }\\[6pt]\)
101. \(- 2 x \sqrt { y } - 2 y \sqrt { x }\)103. \(- 4 x \sqrt { y }\\[6pt]\)
105. \(3 m ^ { 2 } \sqrt { 3 n }\\[6pt]\)
107. \(2 a \sqrt { 3 a b } - 12 a ^ { 2 } \sqrt { a b }\)
D: Multiply and Divide Square Root Expressions.
Exercise \(\PageIndex{4}\)
\( \bigstar \) Multiply and simplify. (Assume all variables represent non-negative real numbers.)
|
|
|
|
- Answers to Odd Exercises:
-
111. \(\sqrt{21}\\[6pt]\)
113. \(6\sqrt{2}\)115. \(2\sqrt{3}\\[6pt]\)
117. \(7\)119. \(70\sqrt{2}\\[6pt]\)
121. \(20\)123. \(2x\\[6pt]\)
125. \(6\sqrt{a}\)127. \(24x\sqrt{3}\)
\( \bigstar \) Distribute and simplify. (Assume all variables represent non-negative real numbers.)
|
|
|
|
- Answers to Odd Exercises:
-
129. \(3\sqrt{5}-5\\[6pt]\)
131. \(42 - 3 \sqrt { 21 }\\[6pt]\)
133. \(3 \sqrt { 2 } - 2 \sqrt { 3 }\)135. \(x + x \sqrt { y }\\[6pt]\)
137. \(2 a \sqrt { 7 b } - 4 b \sqrt { 5 a }\\[6pt]\)
139. \(\sqrt { 6 } + \sqrt { 14 } - \sqrt { 15 } - \sqrt { 35 }\)
141. \(18 \sqrt { 2 } + 2 \sqrt { 3 } - 12 \sqrt { 6 } - 4\)
143. \(8 - 2 \sqrt { 15 }\)
145. \(10\)
147. \(a - 2 \sqrt { 2 a b } + 2 b\)
\( \bigstar \) Divide and simplify. (Assume all variables represent non-negative real numbers.)
|
|
|
|
|
- Answers to Odd Exercises:
-
149. \(5\) 151. \(\dfrac { 2 \sqrt { 6 } } { 5 }\) 153. \(3 x ^ { 2 } \sqrt { 5 }\) 155. \( 4y \sqrt{2} \) 157. \(11 x y^4 \sqrt { x}\)
E: Rationalize the Denominator.
Exercise \(\PageIndex{5}\)
\( \bigstar \) Rationalize the denominator. (Assume all variables represent positive real numbers.)
|
|
|
|
|
|
- Answers to Odd Exercises:
-
161. \(\dfrac { \sqrt { 5 } } { 5 }\) 163. \(\dfrac { \sqrt { 6 } } { 3 }\) 165. \(\dfrac { \sqrt { 10 } } { 4 }\) 167. \(\dfrac { 3 - \sqrt { 15 } } { 3 }\) 169. \(\dfrac { \sqrt { 7 x } } { 7 x }\) 171. \(\dfrac { \sqrt { a b } } { 5 b }\)
\( \bigstar \) Rationalize the denominator. (Assume all variables represent positive real numbers.)
|
|
|
|
|
|
- Answers to Odd Exercises:
-
173. \(3\sqrt { 10 } + 9\) 175. \(\dfrac { \sqrt { 5 } - \sqrt { 3 } } { 2 }\) 177. \(- 1 + \sqrt { 2 }\) 179. \(\dfrac { - 5 - 3 \sqrt { 5 } } { 2} \) 181. \(- 4 - \sqrt { 15 }\) 183. \(\dfrac { 15 - 7 \sqrt { 6 } } { 23 }\)
\( \bigstar \) Rationalize the denominator. (Assume all variables represent positive real numbers.)
|
|
|
|
- Answers to Odd Exercises:
-
185. \(\sqrt { x } - \sqrt { y }\\[6pt]\)
187. \(\dfrac { x ^ { 2 } + 2 x \sqrt { y } + y } { x ^ { 2 } - y }\)189. \(\dfrac { a - 2 \sqrt { a b } + b } { a - b }\\[6pt]\)
191. \(\dfrac { 5 \sqrt { x } + 2 x } { 25 - 4 x }\)193. \(\dfrac { x \sqrt { 2 } + 3 \sqrt { x y } + y \sqrt { 2 } } { 2 x - y }\) 195. \(\dfrac { 2 x + 1 + \sqrt { 2 x + 1 } } { 2 x }\\[6pt]\)
197. \(x + \sqrt { x ^ { 2 } - 1 }\)
\( \bigstar \)