0.04e: Exercises - Rational Exponents
- Page ID
- 38226
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Radical to Exponential Notation
Exercise \(\PageIndex{1}\)
\( \bigstar \) Express using rational exponents.
|
|
|
|
|
|
|
- Answers to odd exercises:
-
1. \(10 ^ { 1 / 2 } \) 3. \(3 ^ { 1 / 3 } \) 5. \(5 ^ { 2 / 3 } \) 7. \(7 ^ { 2 / 3 } \) 9. \(x ^ { 1 / 5 } \) 11. \(x ^ { 7 / 6 } \) 13. \(x ^ { - 1 / 2 }\)
B: Exponential to Radical Notation.
Exercise \(\PageIndex{2}\)
\( \bigstar \) Express in radical form.
|
|
|
|
|
|
- Answers to odd exercises:
-
15. \(\sqrt { 10 }\) 17. \(\sqrt [ 3 ] { 49 } \) 19. \(\sqrt [ 4 ] { x ^ { 3 } }\) 21. \(\dfrac { 1 } { \sqrt { x } } \) 23. \(\sqrt [ 3 ] { x } \) 25. \(\sqrt [ 3 ] { ( 2 x + 1 ) ^ { 2 } } \)
C: Exponential to Radical Form; then Simplify.
Exercise \(\PageIndex{3}\)
\( \bigstar \) Write as a radical and then simplify.
|
|
|
|
|
- Answers to odd exercises:
-
27. \(8\)
29. \(\dfrac{1}{2} \)31. \(\dfrac{1}{2} \\[5pt]\)
33. \(2 \)35. \(2\)
37. \( \dfrac{1}{3} \)39. \(-3 \\[5pt]\)
41. \(2 \)43. \(\dfrac{1}{3} \\[5pt]\)
45. \( 10 \)47. \(\dfrac{1}{2} \)
\( \bigstar \) Write as a radical and then simplify.
|
|
|
|
|
|
- Answers to odd exercises:
-
49. \(27 \) 51. \(32\) 53. \(64 \) 55. \(\dfrac{1}{8} \) 57. \(9 \) 59. \(-8\)
D: Exponential Operations. PRODUCTS and POWERS of Products
Exercise \(\PageIndex{4}\)
\( \bigstar \) Perform the operations and simplify. Leave answers in exponential form.
|
|
|
|
|
- Answers to odd exercises:
-
61. \(25 \\[5pt]\)
63. \(5 ^ { 5 / 6 } \)65. \(y ^ { 13 / 20 } \\[5pt]\)
67.\(u^{2}v^{3} \)69. \(2 \\[5pt]\)
71. \(x ^ { 1 / 3 } \)73. \(\dfrac { 1 } { y ^ { 4 } } \\[5pt]\)
75. \(2 x y ^ { 2 }\)77. \(8 x y ^ { 2 } \\[5pt]\)
79. \(\dfrac { 1 } { 6 x ^ { 2 } y } \)
\( \bigstar \) Perform the operations and simplify. Leave answers in exponential form.
|
|
|
|
- Answers to odd exercises:
-
81. \(81 q^{2} \\[2pt]\)
83. \(a^{\tfrac{1}{2}} b\)85. \(8 u^{\tfrac{1}{4}} \\[5pt]\)
87. \(8 p^{\tfrac{1}{2}} q^{\tfrac{3}{4}} \)85. \(8 u^{\tfrac{1}{4}} \\[5pt]\)
87. \(8 p^{\tfrac{1}{2}} q^{\tfrac{3}{4}}\)89. \(\dfrac { y ^ { 1 / 2 } } { 64 x ^ { 3 } z } \\[5pt]\)
91. \(\dfrac { a ^ { 1 / 3 } b ^ { 3 / 4 } } { 10 b ^ { 2 } }\)
E: Exponential Operations. QUOTIENTS and POWERS of Quotients
Exercise \(\PageIndex{5}\)
\( \bigstar \) Perform the operations and simplify. Leave answers in exponential form.
|
|
|
|
- Answers to odd exercises:
-
101. \(125 \) 103. \(2 a ^ { 1 / 2 } \) 105. \(r^{\frac{7}{2}}\) 107. \(c^{2} \) 109. \(y\) 111. \(x ^ { 1 / 2 } y ^ { 2 / 3 } \) 113. \(7 a ^ { 2/7 } b ^ { 5 / 4 } \)
\( \bigstar \) Perform the operations and simplify. Leave answers in exponential form.
|
|
|
|
- Answers to odd exercises:
-
115. \(a ^ { 1 / 3 } \) 117. \(\dfrac { 2 x ^ { 1 / 3 } } { y ^ { 2 } } \) 119. \(\dfrac{6 s}{t} \) 121. \(\dfrac{2x}{3y} \) 123. \(27 x ^ { 1 / 2 } y ^ { 8 } \) 125. \(9 b ^ { 1 / 2 } \)
F: Radical to Exponential Form Operations.
Exercise \(\PageIndex{6} \)
\( \bigstar \) Rewrite in exponential form and then perform the operations.
|
|
|
|
|
|
- Answers to odd exercises:
-
131. \(\sqrt [ 15 ] { 3 ^ { 13 } } \\[5pt]\)
133. \(\sqrt [ 6 ] { x ^ { 5 } } \)135. \(\sqrt [ 12 ] { x ^ { 11 } } \\[5pt]\)
137. \(\sqrt [ 6 ] { 10 }\)139. \(\sqrt [ 6 ] { a } \\[5pt]\)
141. \(\sqrt [ 15 ] { x }\)143. \(\sqrt [ 5 ] { 4 } \\[5pt]\)
145. \(\sqrt [ 15 ] { 2 } )
.\( \bigstar \)