0.05e: Exercises - Factoring
- Page ID
- 44373
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Factor out the GCF
Exercise \(\PageIndex{A}\)
\( \bigstar \) Factor out the GCF.
|
|
|
|
- Answers to odd exercises:
-
1. \(4 x ^ { 2 } \left( 3 x ^ { 2 } - 4 x + 1 \right)\)
3. \(4 y ^ { 3 } \left( 5 y ^ { 5 } + 7 y ^ { 3 } + 10 \right)\)
5. \(2 a ^ { 2 } b \left( a ^ { 2 } b ^ { 2 } - 3 a b + 4 \right)\)7. \(x ^ { 2 } y ^ { 3 } \left( 2 x y ^ { 2 } - 4 x ^ { 2 } y + 1 \right)\)
9. \(( 2 x + 3 ) \left( 5 x ^ { 2 } - 3 \right)\)
11. \(( 3 x - 1 ) \left( 9 x ^ { 2 } + 1 \right)\)13. \(x ^ { n } \left( x ^ { 4 n } - x ^ { 2 n } + 1 \right)\)
15. \(2 x ^ { 2 } \left( x ^ { 2 } - 6 x - 1 \right)\)
17. \(x ^ { 2 } y \left( x ^ { 2 } y ^ { 2 } - 3 x + 1 \right)\)19. \(7(5y+12)\)
21. \(3x(6x^2−5)\)
23. \(4x(x^2−3x+4)\)
25. \(−3x(x^2−9x+4)\)
B: Factor 4 term Polynomials.
Exercise \(\PageIndex{B}\)
\( \bigstar \) Factor by grouping.
|
|
|
- Answers to odd exercises:
-
31. \(( 2 x + 3 ) \left( x ^ { 2 } + 1 \right)\)
33. \(( 2 x - 1 ) \left( 3 x ^ { 2 } + 2 \right)\)
35. \(( x - 1 ) \left( x ^ { 2 } - 3 \right)\)
37. \(( 2 x + 7 ) \left( x ^ { 2 } - 5 \right)\)
39. \(( 7 y + 5 ) \left( 2 y ^ { 3 } - 1 \right)\)
41. \(\left( x ^ { n } + 1 \right) \left( x ^ { 3 n } + 2 \right)\)43. \(( x - y ) \left( x ^ { 2 } + y ^ { 2 } \right)\)
45. \(( x + 3 y ) \left( 3 x ^ { 2 } y ^ { 2 } - 1 \right)\)
47. \(( a - 4 b ) ( a b - 3 )\)
49. \(\left( a ^ { 2 } + b \right) \left( a ^ { 2 } + b ^ { 3 } \right)\)
51. \(( a - 2 b ) ( 3 x - 5 y )\)
53. \(x y ^ { 2 } ( x - y ) \left( x ^ { 2 } + y ^ { 2 } \right)\)55. \(a ^ { 2 } b ^ { 2 } \left( a ^ { 2 } + b \right) \left( a + b ^ { 2 } \right)\)
57. \(\left( x ^ { 2 } + 1 \right) ( 2 x - 1 )\)
59. \(\left( x ^ { 2 } + y ^ { 2 } \right) ( x - 5 y )\)
61. \(2 x ( x - 2 y ) \left( x ^ { 2 } + y ^ { 2 } \right)\)
63. \((a+b)(x−y)\)
65. \((x−3)(x+7)\)67. \((m^2+1)(m+1)\)
69. \( (-8x +3)(14x +3) \)
71. \( (-8x +3)(16x +3) \)
73. \( (-6x +7)(16x +7) \)
75. \( (3x -10)(3x+14) \)
77. \( (4x -3)(4x+9) \)
79. \( (5x -6)(5x+12) \)
C: Factor Binomials.
Exercise \(\PageIndex{C}\)
\( \bigstar \) I. Factor two term polynomials.
|
|
|
|
|
- Answers to odd exercises:
-
81. \(( x + 8 ) ( x - 8 )\)
83. \(( 3 + 2 y ) ( 3 - 2 y )\)
85. \(( x + 9 y ) ( x - 9 y )\)
87. \(( a b + 2 ) ( a b - 2 )\)
89. \(( a b + c ) ( a b - c )\)
91. \(\left( x ^ { 2 } + 8 \right) \left( x ^ { 2 } - 8 \right)\)
93. \(( 3 x + 5 ) ( x + 5 )\)
95. \(3 ( 2 y - 3 )\)97. \(( 3 x + 2 ) ( x + 8 )\)
99. \(\left( x ^ { 2 } + 4 \right) ( x + 2 ) ( x - 2 )\)
101. \(\left( x ^ { 2 } y ^ { 2 } + 1 \right) ( x y + 1 ) ( x y - 1 )\)
103. \((x^4+y^4)(x^2+y^2)(x+y)(x-y)\)
105. \(\left( x ^ { n } + y ^ { n } \right) \left( x ^ { n } - y ^ { n } \right)\)
107. \(\left( x ^ { 2 n } + y ^ { 2 n } \right) \left( x ^ { n } + y ^ { n } \right) \left( x ^ { n } - y ^ { n } \right)\)
109. \(( x - 3 ) \left( x ^ { 2 } + 3 x + 9 \right)\)
111. \(( 2 y + 3 ) \left( 4 y ^ { 2 } - 6 y + 9 \right)\)113. \(( x - y ) \left( x ^ { 2 } + x y + y ^ { 2 } \right)\)
115. \(( 2 a b + 1 ) \left( 4 a ^ { 2 } b ^ { 2 } - 2 a b + 1 \right)\)
117. \(( x y - 5 ) \left( x ^ { 2 } y ^ { 2 } + 5 x y + 25 \right)\)
119. \(( 2 x + 3 ) \left( x ^ { 2 } + 3 x + 9 \right)\)
121. \(( x + 1 ) \left( 7 x ^ { 2 } + 5 x + 1 \right)\)
123. \(\left( x ^ { n } - y ^ { n } \right) \left( x ^ { 2 n } + x ^ { n } y ^ { n } + y ^ { 2 n } \right)\)
125. \(\left( a ^ { 2 } + 4 \right) \left( a ^ { 4 } - 4 a ^ { 2 } + 16 \right)\)127. \(( x + y ) \left( x ^ { 2 } - x y + y ^ { 2 } \right) ( x - y ) \left( x ^ { 2 } + x y + y ^ { 2 } \right)\) \( \qquad\)
129. \(\begin{array} { l } { \left( x ^ { n } + y ^ { n } \right) \left( x ^ { 2 n } - x ^ { n } y ^ { n } + y ^ { 2 n } \right) } {\left( x ^ { n } - y ^ { n } \right) \left( x ^ { 2 n } + x ^ { n } y ^ { n } + y ^ { 2 n } \right) } \end{array}\)
\( \bigstar \) II. Factor two term polynomials.
|
|
|
|
|
- Answers to odd exercises:
-
131. \(( 8 x + 1 ) ( 8 x - 1 )\)
133. \(( x + 6 y ) ( x - 6 y )\)
135. \(( a b + 5 ) \left( a ^ { 2 } b ^ { 2 } - 5 a b + 25 \right)\)
137. \(\left( 9 x ^ { 2 } + y ^ { 2 } \right) ( 3 x + y ) ( 3 x - y )\)
139. \(( x + 2 y ) \left( x ^ { 2 } - 2 x y + 4 y ^ { 2 } \right) ( x - 2 y ) \left( x ^ { 2 } + 2 x y + 4 y ^ { 2 } \right)\)
141. \( 9x(9x-1) \)
143. \((13m+n)(13m−n)\)145. \((3+11y)(3−11y)\)
147. \(n(13n+1)(13n−1)\)
149. \(6(4p^2+9)\)
151. \((2z−1)(2z+1)(4z^2+1)\)
153. \((a+3−3b)(a+3+3b)\)
155. \((a−5)(a^2+5a+25)\)
157. \(2(m+3)(m^2−3m+9)\)
D: Factor Trinomials, \(a=1\).
Exercise \(\PageIndex{D}\)
\( \bigstar \) Factor trinomials, \(a=1\).
|
|
|
|
- Answers to odd exercises:
-
161. \(( x - 1 ) ( x + 6 )\)
163. \(( x - 2 ) ( x + 6 )\)
165. \(( x - 6 ) ( x - 8 )\)
167. Prime
169. \(( x - 9 ) ^ { 2 }\)171. \(( x - 5 y ) ( x + 4 y )\)
173. \(( x y - 5 ) ( x y + 10 )\)
175. \(( a + 6 b ) ( a - 12 b )\)
177. \(( u - 2 v ) ( u + 16 v )\)
179. \(( x + y - 4 ) ( x + y + 2 )\)181. \(\left( x ^ { 2 } - 8 \right) \left( x ^ { 2 } + 1 \right)\)
183. \(\left( x ^ { 2 } + 4 \right) \left( x ^ { 2 } - 12 \right)\)
185. \(\left( y ^ { 2 } - 10 \right) ^ { 2 }\)
187. \(\left( x ^ { 2 } + y ^ { 2 } \right) \left( x ^ { 2 } + 2 y ^ { 2 } \right)\)
189. \(\left( a ^ { 2 } b ^ { 2 } - 2 \right) ^ { 2 }\)191. \(\left( x ^ { 3 } - 20 \right) \left( x ^ { 3 } + 2 \right)\)
193. \(\left( x ^ { 3 } + 2 y ^ { 3 } \right) \left( x ^ { 3 } - 3 y ^ { 3 } \right)\)
195. \(\left( x ^ { 3 } y ^ { 3 } - 3 \right) \left( x ^ { 3 } y ^ { 3 } + 5 \right)\)
197. \(\left( x ^ { n } + 4 \right) \left( x ^ { n } + 8 \right)\)
199. \(\left( x ^ { n } + a \right) ^ { 2 }\)
E: Factor trinomials, \(a \ne 1 \)
Exercise \(\PageIndex{E}\)
\( \bigstar \) Factor trinomials. (Leading coefficient is not one).
|
|
|
|
- Answers to odd exercises:
-
201. \(( 3 x - 1 ) ( x + 7 )\)
203. \(( 2 a + 3 ) ( 3 a + 2 )\)
205. \(( 6 x - 5 ) ( x + 2 )\)
207. \(( 8 y - 1 ) ( 3 y - 4 )\)
209. Prime
211. \(( 2 x - 7 ) ^ { 2 }\)
213. \(( 9 x + 4 ) ( 3 x - 2 )\)215. \(( 6 x - y ) ( x + 4 y )\)
217. \(( 4 a b - 3 ) ( 2 a b - 3 )\)
219. \(( 2 u - 5 v ) ( 4 u - 3 v )\)
221. \(( 2 a - 3 b ) ^ { 2 }\)
223. \(( x + y - 1 ) ( 5 x + 5 y - 4 )\)
225. \(\left( x ^ { 2 } - 3 \right) \left( 7 x ^ { 2 } - 1 \right)\)227. \(\left( y ^ { 3 } - 2 \right) \left( 4 y ^ { 3 } + 5 \right)\)
229. \(\left( a ^ { 2 } b ^ { 2 } - 2 \right) \left( 5 a ^ { 2 } b ^ { 2 } + 9 \right)\)
231. \(\left( 6 x ^ { 3 } y ^ { 3 } + 5 \right) \left( x ^ { 3 } y ^ { 3 } + 2 \right)\)
233. \(\left( 2 x ^ { n } - 5 \right) \left( 4 x ^ { n } + 5 \right)\)
235. \(\left( 6 x ^ { n } + a \right) ^ { 2 }\)
237. \(- ( x - 5 ) ( 3 x + 1 )\)239. \(- ( x - 2 ) ( x + 12 )\)
241. \(- 2 ( x - 3 ) ( x + 9 )\)
243. \(4 x \left( x ^ { 2 } + 4 x + 5 \right)\)
245. \(2 x ( x + 2 y ) ( x - 6 y )\)
247. \(4 a b ( a - 3 b ) ( a + 2 b )\)
249. \(3 x y \left( x ^ { 2 } + 5 y ^ { 2 } \right) ^ { 2 }\)
F: Factor Trinomials.
Exercise \(\PageIndex{F}\)
\( \bigstar \) Factor the following trinomials.
|
|
|
|
- Answers to odd exercises:
-
251. \(( x - 12 ) ( x + 4 )\)
253. Prime
255. \(( x + 5 y ) ( x + 15 y )\)
257. \(- 2 ( y - 12 ) ( y + 2 )\)
259. \(2 ( 15 x - 1 ) ( 5 x - 3 )\)
261. \(( 3 u + v ) ( 9 u - 4 v )\)
263. \(( 4 m + 9 n ) ^ { 2 }\)265. \(\left( 5 x ^ { 2 } - 6 \right) \left( 5 x ^ { 2 } - 1 \right)\)
267. \(\left( x ^ { 3 } + 5 y ^ { 3 } \right) \left( x ^ { 3 } - 2 y ^ { 3 } \right)\)
269. \(\left( x ^ { n } - 1 \right) ^ { 2 }\)
271. \((5x+3)^2\)
273. \(10(2x+9)^2\)
275. \(3u^2(5u−v)^2\)277. \((m+9)(m−6)\)
279. \((x+5y)(x+7y)\)
281. \((a+7b)(a−3b)\)
283. Prime
285. \(3y(y−5)(y−2)\)
287. \((5y+9)(y+1)\)289. \((5y+1)(2y−11)\)
291. \(−9(9a−1)(a+2)\)
293. \((3a−1)(6a−1)\)
295. Prime
297. \(3(x+4)(x−3)\)
299. \(3(2a−7)(3a+1)\)
G: Mixed Factoring Practice.
Exercise \(\PageIndex{G}\)
\( \bigstar \) Mixed practice. Factor completely.
|
|
|
|
- Answers to odd exercises:
-
301. \(( 2 - 5 x ) ( 2 + 5 x )\)
303. \(( 3 x - 2 y ) ^ { 2 }\)
305. \(( 2 a - 1 ) ( 5 a - 3 b )\)
307. Prime
309. \(3 a b ^ { 2 } \left( 5 a ^ { 2 } + 2 a b - b ^ { 2 } \right)\)
311. \(5 x ( 3 x + 2 ) ( 3 x - 2 )\)
313. \(- ( 10 x - 1 ) ( 2 x - 3 )\)
315. \(3 a b ^ { 2 } ( 2 a + b ) \left( 4 a ^ { 2 } - 2 a b + b ^ { 2 } \right)\)
317. Prime
319. \(8y(y−1)(y+3)\)
321. \(4x(2x−3)(2x+3)\)323. \((2x+5y)^2\)
325. \(2xy(25x^2+36)\)
327. \(4ab(a^2+4)(a−2)(a+2)\)
329. \(6(x+b)(x−2c)\)
331. \(4q(p−3)(p−1)\)
333. \((2x−3y−5)(2x−3y+5)\)
335. \(40a^2(2+3a)\)
337. \((x+9)(x+4)\)
339. \((x−8)(y+7)\)
341. \((3s−2)^2\)
343. \(3(x+5y)(x−5y)\)345. \((x+5)(x^2−5x+25)\)
347. \((3x^2−5)(2x^2−3)\)
349. \(4x^2(6x+11)\)
351. \((4n−7m)^2\)
353. \(5u^2(u+3)(u−3)\)
355. prime
357. \((b−4)(b^2+4b+16)\)
359. \((2b+5c)(b−c)\)
361. \(5(q+3)(q−6) \)
363. \(10(m−5)(m+5)(m^2+25)\)
365. \( (4x -7)(4x+15) \)
367. \( (-8x +9)(16x +9) \)
.