# 0.8e: Exercises- Linear Inequalities

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### A: Check a solution

Exercise $$\PageIndex{1}$$

$$\bigstar$$  Determine whether or not the given value is a solution.

 $$5 x - 1 < - 2 ; x = - 1$$ $$- 3 x + 1 > - 10 ; x = 1$$ $$2 x - 3 < - 5 ; x = 1$$ $$5 x - 7 < 0 ; x = 2$$ $$9 y - 4 \geq 5 ; y = 1$$ $$- 6 y + 1 \leq 3 ; y = - 1$$ $$12 a + 3 \leq - 2 ; a = - \dfrac { 1 } { 3 }$$ $$25 a - 2 \leq - 22 ; a = - \dfrac { 4 } { 5 }$$ $$- 10 < 2 x - 5 < - 5 ; x = - \dfrac { 1 } { 2 }$$ $$3 x + 8 < - 2 \text { or } 4 x - 2 > 5 ; x = 2$$
 1. Yes 3. No 5. Yes 7. No 9. Yes

### B: Solve Linear Inequalities

Exercise $$\PageIndex{2}$$

$$\bigstar$$  Graph all solutions on a number line and provide the corresponding interval notation.

 $$3 x + 5 > - 4$$ $$2 x + 1 > - 1$$ $$5 - 6 y < - 1$$ $$7 - 9 y > 43$$ $$6 - a \leq 6$$ $$- 2 a + 5 > 5$$ $$\dfrac { 5 x + 6 } { 3 } \leq 7$$ $$\dfrac { 4 x + 11 } { 6 } \leq \dfrac { 1 } { 2 }$$ $$\dfrac { 1 } { 2 } y + \dfrac { 5 } { 4 } \geq \dfrac { 1 } { 4 }$$ $$\dfrac { 1 } { 12 } y + \dfrac { 2 } { 3 } \leq \dfrac { 5 } { 6 }$$ $$2 ( 3 x + 14 ) < - 2$$ $$5 ( 2 y + 9 ) > - 15$$ $$5 - 2 ( 4 + 3 y ) \leq 45$$ $$- 12 + 5 ( 5 - 2 x ) < 83$$ $$6 ( 7 - 2 a ) + 6 a \leq 12$$ $$2 a + 10 ( 4 - a ) \geq 8$$ $$9 ( 2 t - 3 ) - 3 ( 3 t + 2 ) < 30$$ $$- 3 ( t - 3 ) - ( 4 - t ) > 1$$ $$\dfrac { 1 } { 2 } ( 5 x + 4 ) + \dfrac { 5 } { 6 } x > - \dfrac { 4 } { 3 }$$ $$\dfrac { 2 } { 5 } + \dfrac { 1 } { 6 } ( 2 x - 3 ) \geq \dfrac { 1 } { 15 }$$ $$5 x - 2 ( x - 3 ) < 3 ( 2 x - 1 )$$ $$3 ( 2 x - 1 ) - 10 > 4 ( 3 x - 2 ) - 5 x$$ $$- 3 y \geq 3 ( y + 8 ) + 6 ( y - 1 )$$ $$12 \leq 4 ( y - 1 ) + 2 ( 2 y + 1 )$$ $$- 2 ( 5 t - 3 ) - 4 > 5 ( - 2 t + 3 )$$ $$- 7 ( 3 t - 4 ) > 2 ( 3 - 10 t ) - t$$ $$\dfrac { 1 } { 2 } ( x + 5 ) - \dfrac { 1 } { 3 } ( 2 x + 3 ) > \dfrac { 7 } { 6 } x + \dfrac { 3 } { 2 }$$ $$- \dfrac { 1 } { 3 } ( 2 x - 3 ) + \dfrac { 1 } { 4 } ( x - 6 ) \geq \dfrac { 1 } { 12 } x - \dfrac { 5 } { 4 }$$ $$4 ( 3 x + 4 ) \geq 3 ( 6 x + 5 ) - 6 x$$ $$1 - 4 ( 3 x + 7 ) < - 3 ( x + 9 ) - 9 x$$ $$6 - 3 ( 2 a - 1 ) \leq 4 ( 3 - a ) + 1$$ $$12 - 5 ( 2 a + 6 ) \geq 2 ( 5 - 4 a ) - a$$

11. $$( - 3 , \infty )$$;

Figure 1.8.11

13. $$( 1 , \infty )$$;

15. $$[ 0 , \infty )$$;

17. $$( - \infty , 3 ]$$;

19. $$[ - 2 , \infty )$$;

21. $$( - \infty , - 5 )$$;

23. $$[ - 8 , \infty )$$;

25. $$[ 5 , \infty )$$;

27. $$( - \infty , 7 )$$;

29. $$( - 1 , \infty )$$;

31. $$( 3 , \infty )$$;

33. $$\left( - \infty , - \dfrac { 3 } { 2 } \right]$$;

35. $$\emptyset$$;

37. $$( - \infty , 0 )$$;

39. $$\mathbb { R }$$;

41. $$[ - 2 , \infty )$$;

### C: Solve Compound Linear Inequalities

Exercise $$\PageIndex{3}$$

$$\bigstar$$  Graph all solutions on a number line and provide the corresponding interval notation.

 $$- 1 < 2 x + 1 < 9$$ $$- 4 < 5 x + 11 < 16$$ $$- 7 \leq 6 y - 7 \leq 17$$ $$- 7 \leq 3 y + 5 \leq 2$$ $$- 7 < \dfrac { 3 x + 1 } { 2 } \leq 8$$ $$- 1 \leq \dfrac { 2 x + 7 } { 3 } < 1$$ $$- 4 \leq 11 - 5 t < 31$$ $$15 < 12 - t \leq 16$$ $$- \dfrac { 1 } { 3 } \leq \dfrac { 1 } { 6 } a + \dfrac { 1 } { 3 } \leq \dfrac { 1 } { 2 }$$ $$- \dfrac { 1 } { 6 } < \dfrac { 1 } { 3 } a + \dfrac { 5 } { 6 } < \dfrac { 3 } { 2 }$$ $$5 x + 2 < - 3 \text { or } 7 x - 6 > 15$$ $$4 x + 15 \leq - 1 \text { or } 3 x - 8 \geq - 11$$ $$8 x - 3 \leq 1 \text { or } 6 x - 7 \geq 8$$ $$6 x + 1 < - 3 \text { or } 9 x - 20 > - 5$$ $$8 x - 7 < 1 \text { or } 4 x + 11 > 3$$ $$10 x - 21 < 9 \text { or } 7 x + 9 \geq 30$$ $$7 + 2 y < 5 \text { or } 20 - 3 y > 5$$ $$5 - y < 5 \text { or } 7 - 8 y \leq 23$$ $$15 + 2 x < - 15 \text { or } 10 - 3 x > 40$$ $$10 - \dfrac { 1 } { 3 } x \leq 5 \text { or } 5 - \dfrac { 1 } { 2 } x \leq 15$$ $$9 - 2 x \leq 15 \text { and } 5 x - 3 \leq 7$$ $$5 - 4 x > 1 \text { and } 15 + 2 x \geq 5$$ $$7 y - 18 < 17 \text { and } 2 y - 15 < 25$$ $$13 y + 20 \geq 7 \text { and } 8 + 15 y > 8$$ $$5 - 4 x \leq 9 \text { and } 3 x + 13 \leq 1$$ $$17 - 5 x \geq 7 \text { and } 4 x - 7 > 1$$ $$9 y + 20 \leq 2 \text { and } 7 y + 15 \geq 1$$ $$21 - 6 y \leq 3 \text { and } - 7 + 2 y \leq - 1$$ $$- 21 < 6 ( x - 3 ) < - 9$$ $$0 \leq 2 ( 2 x + 5 ) < 8$$ $$- 15 \leq 5 + 4 ( 2 y - 3 ) < 17$$ $$5 < 8 - 3 ( 3 - 2 y ) \leq 29$$ $$5 < 5 - 3 ( 4 + t ) < 17$$ $$- 3 \leq 3 - 2 ( 5 + 2 t ) \leq 21$$ $$- 40 < 2 ( x + 5 ) - ( 5 - x ) \leq - 10$$ $$- 60 \leq 5 ( x - 4 ) - 2 ( x + 5 ) \leq 15$$ $$- \dfrac { 1 } { 2 } < \dfrac { 1 } { 30 } ( x - 10 ) < \dfrac { 1 } { 3 }$$ $$- \dfrac { 1 } { 5 } \leq \dfrac { 1 } { 15 } ( x - 7 ) \leq \dfrac { 1 } { 3 }$$ $$- 1 \leq \dfrac { a + 2 ( a - 2 ) } { 5 } \leq 0$$ $$0 < \dfrac { 5 + 2 ( a - 1 ) } { 6 } < 2$$

43. $$(- 1,4 )$$;

45. $$[0,4]$$;

47. $$(−5,5]$$;

49. $$(−4,3]$$;

51. $$[−4,1]$$;

53. $$(−∞,−1)∪(3,∞)$$;

55. $$(−∞,\frac{1}{2}]∪[\frac{5}{2},∞)$$;

57. $$ℝ$$;

59. $$(−∞,5)$$;

61. $$(−∞,−10)$$;

63. $$[−3,2]$$;

65. $$(−∞,5)$$;

67. $$Ø$$;

69. $$−2$$;

71. $$(−\frac{1}{2},\frac{3}{2})$$;

73. $$[−1,3)$$;

75. $$(−8,−4)$$;

77. $$(−15,−5]$$;

79. $$(−5,20)$$;

81. $$[−\frac{1}{3}, \frac{4}{3}]$$;

.

0.8e: Exercises- Linear Inequalities is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.