1.1e: Exercises - Solve by Factoring
- Page ID
- 45462
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Solve by Factoring
Exercise \(\PageIndex{A}\)
Solve by factoring (Zero Factor Property, GCF, Difference of Squares).
1. \((3a−10)(2a−7)=0 \\[4pt]\) 2. \((5b+1)(6b+1)=0 \\[4pt]\) 3. \(6m(12m−5)=0 \\[4pt]\) 4. \(2x(6x−3)=0 \\[4pt]\) 5. \((2x−1)^2=0 \\[4pt]\) |
6. \((3y+5)^2=0 \\[4pt]\) 7. \(8( 2 x + 1 ) ( 3 x - 5 ) = 0 \\[4pt]\) 8. \(4 (5 x - 1 ) ( 2 x + 3 ) = 0 \\[4pt]\) 9. \(x^2 + 4x = 0 \\[4pt]\) 10. \(3x^2 + 2x = 0 \\[4pt]\) |
11. \(4x^3 = 36 x^2 \\[4pt]\) 12. \( 16 x^2 = 8x \\[4pt] \) 13. \(7a^2+14a=7a \\[4pt]\) 14. \(2x^2 - 25x = 7x^2 \\[4pt] \) 15. \(49m^2=144 \\[4pt]\) |
16. \(625=x^2 \\[4pt]\) 17. \(16y^2=81 \\[4pt]\) 16. \(64p^2=225\\[4pt] \) 19. \(121n^4=36n^2 \\[4pt]\) 20. \(100y^4=9y^2 \\[4pt]\) |
- Answers to Odd Exercises:
-
1. \(a=\frac{10}{3},\; a=\frac{7}{2}\)
3. \(m=0,\; m=\frac{5}{12}\)
5. \(x=\frac{1}{2}\)
7. \(x=- \frac { 1 } { 2 } ,\; x=\frac { 5 } { 3 }\)
9. \(x = 0 , \; x =-4 \)
11. \( x = 0,\; x=9 \)
13. \(a=−1,\; a=0\)
15. \(m=\frac{12}{7},\; m=−\frac{12}{7}\)
17. \(y=−\frac{9}{4},\; y=\frac{9}{4}\)
19. \(n=0, \; n=−\frac{6}{11},\; n=\frac{6}{11}\)
\( \bigstar \)
Solve each trinomial equation by factoring.
21. \(x ^ { 4 } - 5 x ^ { 2 } + 4 = 0 \\[4pt]\) 22. \(4 x ^ { 4 } - 37 x ^ { 2 } + 9 = 0 \\[4pt]\) 23. \(x ^ { 2 } - 15 x + 50 = 0 \\[4pt]\) 24. \(x ^ { 2 } + 10 x - 24 = 0 \\[4pt]\) 25. \(x^2+36 = 13x \\[4pt] \) 26. \(n^2=5−6n \\[4pt]\) 27. \(3y^2−18y=−27 \\[4pt]\) |
28. \(4x^2 + 100 = 40x \\[4pt] \) 29. \(x^3+36x=12x^2 \\[4pt]\) 30. \(m^3−2m^2=−m \\[4pt]\) 31. \(3y^3+48y=24y^2 \\[4pt]\) 32. \(2y^3+2y^2=12y \\[4pt] \) 33. \((x+6)(x−3)=−8 \\[4pt]\) 34. \((p−5)(p+3)=−7 \\[4pt]\) |
35. \(( x + 4 ) ( x - 2 ) = 16 \\[4pt]\) 37. \((x+1)(x−3)=−4x \\[4pt]\) 38. \((y−3)(y+2)=4y \\[4pt]\) 39. \(( x + 2 ) ( x - 8 ) = 2(x - 14 )\\[4pt]\) 40. \((x+4)(x-6) = 2(x+4) \\[4pt] \) |
- Answers to Odd Exercises:
-
21. \( x=\pm 1 ,\; x= \pm 2\)
23. \(x=5, \; x=10\)
25. \(a=4,\; a=9\)
27. \(y = 3\)
29. \( x=0 \; x=6\)
31. \(x=0,\space x=4\)
33. \(x=2,\; x=−5\)
35. \( x=- 6, \; x=4\)
37. \(x=1,\; x=−3\)
39. \( x=2, \; x=6\)
\( \bigstar \)
Solve each trinomial equation by factoring.
41. \(3 x ^ { 2 } + 2 x - 5 = 0 \\[4pt]\) 42. \(2 x ^ { 2 } + 9 x + 7 = 0 \\[4pt]\) 43. \(5a^2−26a=24 \\[4pt]\) 44. \(4b^2+7b=−3 \\[4pt]\) 45. \(4m^2=17m−15 \\[4pt]\) 46. \(4x^2−13x=−3 \\[4pt]\) 47. \(20x^2−60x=−45 \\[4pt]\) |
48. \(18b^2+60b+50=0 \\[4pt]\) 49. \(15x^2−10x=40 \\[4pt]\) 50. \(14y^2−77y=−35 \\[4pt]\) 51. \(18x^2−9=−21x \\[4pt]\) 52. \(16y^2+12=−32y \\[4pt]\) 53. \(6 x ^ { 2 } - 5 x - 2 = 30 x + 4 \\[4pt]\) 54. \(6 x ^ { 2 } - 9 x + 15 = 20 x - 13 \\[4pt]\) |
55. \(5x^2 - 39x + 12 = 4(x -3) \\[4pt]\) 56. \(4 x ^ { 2 } + 5 x - 5 = 15 ( 3 - 2 x ) \\[4pt]\) 57. \(( 6 x + 1 ) ( x + 1 ) = 6 \\[4pt]\) 58. \(( 2 x - 1 ) ( x - 4 ) = 39 \\[4pt]\) 59. \((3x−2)(x+4)=12x \\[4pt]\) 60. \((2y−3)(3y−1)=8y \\[4pt]\) |
- Answers to Odd Exercises:
-
41. \( x=- \frac { 5 } { 3 } , \; x= 1\)
43. \(a=−\frac{4}{5},\; a=6\)
45. \(m=\frac{5}{4},\; m=3\)
47. \(x=\frac{3}{2}\)
49. \(x=2,\; x=−\frac{4}{3}\)
51. \(x=−\frac{3}{2},\; x=\frac{1}{3}\)
53. \( x=- \frac { 1 } { 6 } , \; x=6\)
55. \( x=\frac { 3 } { 5 } , \; x=8\)
57. \( x=- \frac { 5 } { 3 } , \; x=\frac { 1 } { 2 }\)
59. \( x=- \frac { 4 } { 3 } , \; x=2\)
\( \bigstar \)
Solve each polynomial equation by factoring.
61. \(4 x ^ { 3 } - 14 x ^ { 2 } - 30 x = 0 \\[4pt]\) 62. \(9 x ^ { 3 } + 48 x ^ { 2 } - 36 x = 0 \\[4pt]\) 63. \(- 10 x ^ { 3 } - 28 x ^ { 2 } + 48 x = 0 \\[4pt]\) 64. \(- 2 x ^ { 3 } + 15 x ^ { 2 } + 50 x = 0 \\[4pt]\) 65. \(16p^3=24p^2-9p \\[4pt]\) 66. \(36x^3+24x^2=−4x \\[4pt] \) 67. \(\dfrac { 1 } { 10 } x ^ { 2 } - \dfrac { 7 } { 15 } x - \dfrac { 1 } { 6 } = 0 \\[4pt]\) |
68. \(\dfrac { 2 } { 3} x ^2 - \dfrac { 7 } { 3} x - \dfrac { 5 } {4 } = 0 \\[4pt]\) 69. \(\dfrac { 1 } { 4 } - \dfrac { 4 } { 9 } x ^ { 2 } = 0 \\[4pt]\) 70. \( \dfrac { 2 } {25 } x ^ { 2 } = \dfrac { 1 } {2 } \\[4pt]\) 71. \(\dfrac { 1 } { 3 } x ^ { 3 } - \dfrac { 3 } { 4 } x = 0 \\[4pt]\) 72. \(\dfrac { 1 } { 2 } x ^ { 3 } - \dfrac { 1 } { 50 } x = 0 \\[4pt] \) 73. \(2 x ^ { 3 } - x ^ { 2 } - 72 x + 36 = 0 \\[4pt]\) 74. \(x ^ { 3 } - 3 x ^ { 2 } - x + 3 = 0 \\[4pt]\) |
75. \(45 x ^ { 3 } - 9 x ^ { 2 } - 5 x + 1 = 0 \\[4pt]\) 76. \(4 x ^ { 3 } - 32 x ^ { 2 } - 9 x + 72 = 0 \\[4pt]\) 77. \(16x^2 +24x +9 = 144x^2 \\[4pt]\) 78. \(25x^2 - 80x + 64 = 100x^2 \\[4pt]\) 79. \(9x^2 +12x +4 = 144 \\[4pt]\) 80. \(16x^2-40x+25 = 36 \\[4pt]\) |
- Answers to Odd Exercises:
-
61. \( x=0 , \; x=- \frac { 3 } { 2 } , \; x=5\)
63. \( x=- 4, \;x=0 , \; x=\frac { 6 } { 5 }\)
65. \(p=0,\; p=\frac{3}{4}\)
67. \( x=-\frac { 1 } { 3 } , \; x=5\)
69. \( x = \pm \frac{3}{4} \)
71. \( x=0 ,\; x= \pm \frac { 3 } { 2 }\)
73. \( x=\pm 6 ,\; x= \frac { 1 } { 2 }\)
75. \( x=\pm \frac { 1 } { 3 } , \;x= \frac { 1 } { 5 }\)
77. \(x=3/8, \; x=-3/16 \)
79. \(x=10/3, \; x = -14/3 \)
\( \bigstar \)