Skip to main content
Mathematics LibreTexts

3.5e: Exercises - Division of Polynomials

  • Page ID
    45238
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A: Concepts

    Exercise \(\PageIndex{A}\)

    1) If division of a polynomial by a binomial results in a remainder of zero, what can be conclude?

    2) If a polynomial of degree \(n\) is divided by a binomial of degree \(1\), what is the degree of the quotient?

    Answers to odd exercises:

    1. The binomial is a factor of the polynomial.

    B: Perform Polynomial Long Division

    Exercise \(\PageIndex{B}\) 

    \( \bigstar \) Use long division to divide.  Also specify the quotient and the remainder.

    3) \((x^2+5x−1)÷(x−1)\)

    4) \((2x^2−9x−5)÷(x−5)\)

    5) \((3x^2+23x+14)÷(x+7)\)

    6) \((4x^2−10x+6)÷(4x+2)\)

    7) \((6x^2−25x−25)÷(6x+5)\)

    8) \((−x^2−1)÷(x+1)\)

    9) \((2x^2−3x+2)÷(x+2)\)

    10) \((x^3−126)÷(x−5)\)

    11) \((3x^2−5x+4)÷(3x+1)\)

    12) \((x^3−3x^2+5x−6)÷(x−2)\)

    13) \((2x^3+3x^2−4x+15)÷(x+3)\)

     

    \( \bigstar \) Divide. 

    14) \(\dfrac{x^{3}-5 x^{2}+x+15}{x-3}\)

    15) \(\dfrac{y^{3}-4 y^{2}+6 y-4}{y-2}\)

    16) \(\dfrac{x^{5}+3 x+2}{x^{3}+2 x+1}\) 

    17) \(\dfrac{2 z^{3}+5 z+8}{z+1}\)

    18) \(\dfrac{3 x^{5}-4 x^{3}+3 x^{2}+12 x-10}{x^{2}+2 x-1}\)

    19) \(\dfrac{2 y^{5}-3 y^{4}-y^{2}+y+4}{y^{2}+1}\)

    20) \(\dfrac{3 y^{3}-4 y^{2}-3}{y^{2}+5 y+2}\)

    21) \(\dfrac{5 x^{4}-3 x^{2}+2}{x^{2}-3 x+5}\)

     

    Answers to odd exercises:

    3. \(\mathrm{x+6+\dfrac{5}{x−1},
    quotient: x+6, remainder: 5}\)

    5. \(\mathrm{3x+2,
    quotient: 3x+2, remainder: 0}\)

    7. \(\mathrm{x−5,
    quotient: x−5, remainder: 0}\)

    9. \(\mathrm{2x−7+\dfrac{16}{x+2},
    quotient: 2x−7, remainder: 16}\)

    11. \(\mathrm{x−2+\dfrac{6}{3x+1},
    quotient: x−2, remainder: 6}\)

    13. \(\mathrm{2x^2−3x+5,
    quotient: 2x^2−3x+5, remainder: 0}\)

    15. \( y^2-2y+2 \)

    17. \( 2z^2-2z+7 + \dfrac{1}{z+1} \)

    19. \( 2y^3 -3y^2 -2y +2 +\dfrac{3y+2}{y^2+1} \)

    21. \( 5x^2 + 15x + 17 + \dfrac{-24x-83}{x^2-3 x+5} \)

    C: Use Long Division to Rewrite a Polynomial

    Exercise \(\PageIndex{C}\) 

    \( \bigstar \) Use polynomial long division to perform the indicated division. Write the polynomial dividend in the form \(p(x) = d(x)q(x) + r(x)\).

    23. \(\left(4x^2+3x-1 \right) \div (x-3)\) 

    24) \(\dfrac{x^{3}-4 x^{2}-3 x-10}{x^{2}+x+2}\)

    25. \(\left(2x^3-x+1 \right) \div \left(x^{2} +x+1 \right)\)

    26) \(\dfrac{2 x^{3}-3 x^{2}+7 x-3}{x^{2}-x+3}\)

    27. \(\left(5x^{4} - 3x^{3} + 2x^{2} - 1 \right) \div \left(x^{2} + 4 \right)\)

    28) \(\dfrac{x^{4}+2 x^{3}-x^{2}+x+6}{x+2}\)

    29. \(\left(-x^{5} + 7x^{3} - x \right) \div \left(x^{3} - x^{2} + 1 \right)\)

    30) \(\dfrac{x^{4}+x^{3}+5 x^{2}+3 x+6}{x^{2}+x-1}\)

    31. \(\left(9x^{3} + 5 \right) \div \left(2x - 3 \right)\)

    32) \(\dfrac{x^{4}+2 x^{3}+4 x^{2}+3 x+2}{x^{2}+x+2}\)

    33. \(\left(4x^2 - x - 23 \right) \div \left(x^{2} - 1 \right)\) 

    34) \(\dfrac{2 x^{4}+3 x^{3}+3 x^{2}-5 x-3}{2 x^{2}-x-1}\)

    Answers to odd exercises:

    23. \(4x^2+3x-1 = (x-3)(4x+15) + 44\)

    25. \(2x^3-x+1 = \left(x^2+x+1\right)(2x-2)+(-x+3)\)

    27. \(5x^{4} - 3x^{3} + 2x^{2} - 1 = \left(x^{2} + 4 \right) \left(5x^{2} - 3x - 18 \right) + (12x + 71)\)

    29. \(-x^{5} + 7x^{3} - x = \left(x^{3} - x^{2} + 1 \right) \left(-x^{2} - x + 6 \right) + \left(7x^{2} - 6 \right)\)

    31. \(9x^{3} + 5 =(2x - 3) \left(\frac{9}{2}x^{2} + \frac{27}{4}x + \frac{81}{8} \right) + \frac{283}{8}\)

    33. \(4x^2 - x - 23 = \left(x^{2} - 1 \right)(4) + (-x - 19)\)

    D: Perform Synthetic Division

    Exercise \(\PageIndex{D}\) 

    \( \bigstar \) Use synthetic division to divide. Also state the quotient and remainder.

    35) \(\dfrac{4x^3−33}{x−2}\)

    36) \(\dfrac{2x^3+25}{x+3}\)

    37) \(\dfrac{3x^3+2x−5}{x−1}\)

    38) \(\dfrac{−4x^3−x^2−12}{x+4}\)

    39) \(\dfrac{x^4−22}{x+2}\)

     

     \( \bigstar \)For the exercises below, use synthetic division to find the quotient.

    40) \((3x^3−2x^2+x−4)÷(x+3)\)

    41) \((2x^3−6x^2−7x+6)÷(x−4)\)

    42) \((6x^3−10x^2−7x−15)÷(x+1)\)

    43) \((4x^3−12x^2−5x−1)÷(2x+1)\)

    44) \((9x^3−9x^2+18x+5)÷(3x−1)\)

    45) \((3x^3−2x^2+x−4)÷(x+3)\)

    46) \((−6x^3+x^2−4)÷(2x−3)\)

    47) \((2x^3+7x^2−13x−3)÷(2x−3)\)

    48) \((3x^3−5x^2+2x+3)÷(x+2)\)

    49) \((4x^3−5x^2+13)÷(x+4)\)

    50) \((x^3−3x+2)÷(x+2)\)

    51) \((x^3−21x^2+147x−343)÷(x−7)\)

    52) \((x^3−15x^2+75x−125)÷(x−5)\)

    53) \((9x^3−x+2)÷(3x−1)\)

    54) \((6x^3−x^2+5x+2)÷(3x+1)\)

    55) \((x^4+x^3−3x^2−2x+1)÷(x+1)\)

    56) \((x^4−3x^2+1)÷(x−1)\)

    57) \((x^4+2x^3−3x^2+2x+6)÷(x+3)\)

    58) \((x^4−10x^3+37x^2−60x+36)÷(x−2)\)

    59) \((x^4−8x^3+24x^2−32x+16)÷(x−2)\)

    60) \((x^4+5x^3−3x^2−13x+10)÷(x+5)\)

    61) \((x^4−12x^3+54x^2−108x+81)÷(x−3)\)

    62) \((4x^4−2x^3−4x+2)÷(2x−1)\)

    63) \((4x^4+2x^3−4x^2+2x+2)÷(2x+1)\)

    Answers to odd exercises:

    35. \( 4x^2+8x+16 + \frac{-1}{x−2}\),
    \(\mathrm{Quotient: 4x^2+8x+16, remainder: −1}\)

    37. \( 3x^2+3x+5\) ,
    \(\mathrm{Quotient: 3x^2+3x+5, remainder: 0}\)

    39. \( x^3−2x^2+4x−8 + \frac{-6}{x+2}\),
    \(\mathrm{Quotient: x^3−2x^2+4x−8, remainder: −6}\)

    41. \(2x^2+2x+1+\dfrac{10}{x−4}\)

    43. \(2x^2−7x+1−\dfrac{2}{2x+1}\)

    45. \(3x^2−11x+34−\dfrac{106}{x+3}\)

    47. \(x^2+5x+1\)

    49. \(4x^2−21x+84−\dfrac{323}{x+4}\)

    51. \(x^2−14x+49\)

    53. \(3x^2+x+\dfrac{2}{3x−1}\)

    55. \(x^3−3x+1\)

    57. \(x^3−x^2+2\)

    59. \(x^3−6x^2+12x−8\)

    61. \(x^3−9x^2+27x−27\)

    63. \(2x^3−2x+2\)

    E: Use Synthetic Division to Rewrite a Polynomial

    Exercise \(\PageIndex{E}\) 

    \( \bigstar \) For the exercises below, use synthetic division to determine whether the first expression is a factor of the second. If it is, write the second expression as a product of two factors.

    64) \(x−2, \; 4x^3−3x^2−8x+4\)

    65) \(x−2, \; 3x^4−6x^3−5x+10\)

    66) \(x+3, \; −4x^3+5x^2+8\)

    67) \(x−2, \; 4x^4−15x^2−4\)

    68) \(x−\dfrac{1}{2}, \; 2x^4−x^3+2x−1\)

    69) \(x+\dfrac{1}{3}, \; 3x^4+x^3−3x+1\)

    \( \bigstar \) In the exercises below, use synthetic division to perform the indicated division. Write the polynomial in the form\(p(x) = d(x)q(x) + r(x)\).

    70. \(\left(3x^2-2x+1 \right) \div \left(x-1\right)\) 

    71. \(\left(x^2-5 \right) \div \left(x-5\right)\)

    72. \(\left(3-4x-2x^2 \right) \div \left(x+1\right)\)

    73. \(\left(4x^2-5x +3\right) \div \left(x+3\right)\)

    74. \(\left(x^3 + 8 \right) \div \left(x+2\right)\)

    75. \(\left(4x^3 +2x-3 \right) \div \left(x -3\right)\)

    76. \(\left(18x^2-15x-25\right) \div \left(x - \frac{5}{3} \right)\)

    77. \(\left(4x^2-1 \right) \div \left(x - \frac{1}{2} \right)\)

    78. \(\left(2x^3+x^2+2x+1 \right) \div \left(x + \frac{1}{2} \right)\)

    79. \(\left(3x^3 - x + 4 \right) \div \left(x - \frac{2}{3} \right)\)

    80. \(\left(2x^3 - 3x +1 \right) \div \left(x - \frac{1}{2} \right)\)

    81. \(\left(4x^4-12x^3+13x^2 -12x+9\right) \div \left(x - \frac{3}{2} \right)\)

    82. \(\left(x^4-6x^2+9 \right) \div \left(x -\sqrt{3} \right)\)

    83. \(\left(x^6-6x^4+12x^2-8\right) \div \left(x +\sqrt{2} \right)\) 

     

    Answers to odd exercises:

    65. Yes \((x−2)(3x^3−5)\)

    67. Yes \((x−2)(4x^3+8x^2+x+2)\)

    69. No

    71. \(\left(x^2-5 \right)= \left(x-5\right)(x+5) + 20\)

    73. \(\left(4x^2-5x +3\right) = \left(x+3\right)(4x-17)+54\)

    75. \(\left(4x^3 +2x-3 \right) = \left(x -3\right) \left(4x^2+12x+38\right) + 111\)

    77. \(\left(4x^2-1 \right) = \left(x - \frac{1}{2} \right)(4x+2)+0\)

    79. \(\left(3x^3 - x + 4 \right) = \left(x - \frac{2}{3} \right) \left(3x^2+2x+\frac{1}{3}\right) + \frac{38}{9}\)

    81. \(\left(4x^4-12x^3+13x^2 -12x+9\right) = \left(x - \frac{3}{2} \right) \left(4x^3-6x^2+4x-6 \right)+0\)

    83. \(\left(x^6-6x^4+12x^2-8\right) = \left(x +\sqrt{2} \right) \left(x^5-\sqrt{2} \, x^4-4x^3+4\sqrt{2} \, x^2+4x-4\sqrt{2}\right) + 0\)

    F: Synthetic Division with Complex Numbers

    Exercise \(\PageIndex{F}\) 

    \( \bigstar \) For the exercises below, use synthetic division to determine the quotient involving a complex number.

    85) \(\dfrac{x+1}{x−i}\) 86) \(\dfrac{x^2+1}{x−i}\) 87) \(\dfrac{x+1}{x+i}\) 88) \(\dfrac{x^2+1}{x+i}\) 89) \(\dfrac{x^3+1}{x−i}\)

    \( \bigstar \) Find the remainder. 

    90) \((x^4−9x^2+14)÷(x−2)\)

    91) \((3x^3−2x^2+x−4)÷(x+3)\)

    92) \((x^4+5x^3−4x−17)÷(x+1)\)

    93) \((−3x^2+6x+24)÷(x−4)\)

    94) \((5x^5−4x^4+3x^3−2x^2+x−1)÷(x+6)\)

    95) \((x^4−1)÷(x−4)\)

    96) \((3x^3+4x^2−8x+2)÷(x−3)\)

    97) \((4x^3+5x^2−2x+7)÷(x+2)\)

    Answers to odd exercises:

    85. \(1+\dfrac{1+i}{x−i}\)

    87. \(1+\dfrac{1−i}{x+i}\)

    89. \(x^2+ix−1+\dfrac{1−i}{x−i}\)

    91. \(−106\), \(f(2) = -106\)

    93. \(0\), \(f(4) = 0 \)

    95. \(255\), \(f(4) = 255 \)

    97. \(−1\), \(f(-2) = -1 \)

     

    G: Construct a polynomial from a graph and a given Factor

    Exercise \(\PageIndex{G}\) 

    \( \bigstar \) Use the graph of the third-degree polynomial and one factor to write the factored form of the polynomial suggested by the graph. The leading coefficient is one.

    98) Factor is \(x^2−x+3\)

    CNX_PreCalc_Figure_03_05_201.jpg

    99) Factor is \((x^2+2x+4)\)

    CNX_PreCalc_Figure_03_05_202.jpg

    100) Factor is \(x^2+2x+5\)

    CNX_PreCalc_Figure_03_05_203.jpg

    101) Factor is \(x^2+2x+2\)

    CNX_PreCalc_Figure_03_05_205.jpg

    102) Factor is \(x^2+x+1\)

    CNX_PreCalc_Figure_03_05_204.jpg

     

     

    Answers to odd exercises:
    99. \((x−1)(x^2+2x+4)\) 101. \((x+3)(x^2+2x+2)\)

    3.5e: Exercises - Division of Polynomials is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?