4.5e: Exercises - Properties of Logarithms
- Page ID
- 44987
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Concepts
Exercise \(\PageIndex{A}\)
- How does the power rule for logarithms help when solving logarithms with the form \(\log _b(\sqrt[n]{x})\)
- Write the Product Property in your own words. Does it apply to each of the following? \(\log _{a} 5 x, \log _{a}(5+x)\). Why or why not?
- Write the Power Property in your own words. Does it apply to each of the following? \(\log _{a} x^{p},\left(\log _{a} x\right)^{r}\). Why or why not?
- Use an example to show that \(\log (a+b) \neq \log a+\log b ?\)
- Explain how to find the value of \(\log _{7} 15\) using your calculator.
- What does the change-of-base formula do? Why is it useful when using a calculator?
- Answers to odd exercises:
-
1. Any root expression can be rewritten as an expression with a rational exponent so that the power rule can be applied, making the logarithm easier to calculate. Thus, \(\log _b \left ( x^{\frac{1}{n}} \right ) = \dfrac{1}{n}\log_{b}(x)\).
3. Answers may vary
5. Answers may vary
B: Basic simplification of logs
Exercise \(\PageIndex{B}\)
\( \bigstar \) For the following exercises, use properties of logarithms to evaluate without using a calculator.
7. \(\log _{7} 1\) 8. \(\log _{1 / 2} 2\) 9. \(\log 10^{14}\) 10. \(\log 10^{-23}\) 11. \(\log _{3} 3^{10}\) 12. \(\log _{6} 6\) 13. \(\ln e^{7}\) 14. \(\ln \left(\frac{1}{e}\right)\) |
15. \(\log _{1 / 2}\left(\frac{1}{2}\right)\) 16. \(\log _{1 / 5} 5\) 17. \(\log _{3 / 4}\left(\frac{4}{3}\right)\) 18. \(\log _{2 / 3} 1\) 19. \(2^{\log _{2} 100}\) 20. \(3^{\log _{3} 1}\) 21. \(10^{\log 18}\) 22. \(e^{\ln 23}\) |
23. \(e^{\ln x^{2}}\) 24. \(e^{\ln e^{x}}\) 25. a. \(\log _{12} 1\), b. \(\ln e\) 26. a. \(\log _{4} 1\), b. \(\log _{8} 8\) 27. a. \(5^{\log _{5} 10}\), b. \(\log _{4} 4^{10}\) 28. a. \(3^{\log _{3} 6}\), b. \(\log _{2} 2^{7}\) 29. a. \(6^{\log _{6} 15}\), b. \(\log _{8} 8^{-4}\) 30. a. \(8^{\log _{8} 7}\), b. \(\log _{6} 6^{-2}\) |
32. a. \(10^{\log \sqrt{5}}\), b. \(\log 10^{-2}\) 33. a. \(10^{\log \sqrt{3}}\), b. \(\log 10^{-1}\) 34. a. \(e^{\ln 4}\), b. \(\ln e^{2}\) 35. a. \(e^{\ln 3}\), b. \(\ln e^{7}\) 36. \(\log _3 \left ( \frac{1}{9} \right )-3\log _3 (3)\) 37. \(6\log _8 (2)+\frac{\log _8 (64)}{3\log _8 (4)}\) 38. \(2\log _9 (3)-4\log _9 (3) \\ |
\( \bigstar \) Find \(a\):
39. \(\ln a=1\) 40. \(\log a=-1\) |
41. \(\log _{9} a=-1\) 42. \(\log _{12} a=1\) |
43. \(\log _{2} a=5\) 44. \(\log a=13\) |
45. \(2^{a}=7\) 46. \(e^{a}=23\) |
47. \(\log _{a} 4^{5}=5\) 48. \(\log _{a} 10=1\) |
- Answers to odd exercises:
-
7. \(0\)
9. \(14\)
11. \(10\)
13. \(7\)
15. \(1\)
17. \(−1\)
19. \(100\)
21. \(18\)
23. \(x^{2}\)
25. \(0\), \(1\)
27. \(10\), \(10\)
29. \(15\), \(-4\)
33. \(\sqrt{3}\), \(-1\)
35. \(3\), \(7\)
37. \(3\)
39. \(e\)
41. \(\frac{1}{9}\)
43. \(2^{5}=32\)
45. \(\log _{2} 7\)
47. \(4\)
C: Expand logarithms
Exercise \(\PageIndex{C}\)
\( \bigstar \) In the following exercises, use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify if possible.
49. \(\log _{5} 8 y\) | 50. \(\log _{4} 6 x\) | 51. \(\log _{3} 81 x y\) | 52. \(\log _{2} 32 x y\) | 53. \(\log 1000 y\) | 54. \(\log 100 x\) |
\( \bigstar \) In the following exercises, use the Quotient Property of Logarithms to write each logarithm as a sum of logarithms. Simplify if possible.
55. \(\log _{6} \dfrac{5}{6} \\[6pt] \) 56. \(\log _{3} \dfrac{3}{8}\) |
57. \(\log _{5} \dfrac{125}{x} \\[6pt] \) 58. \(\log _{4} \dfrac{16}{y}\) |
59. \(\log \dfrac{10,000}{y} \\[6pt] \) 60. \(\log \dfrac{x}{10}\) |
61. \(\ln \dfrac{e^{4}}{16} \\[6pt] \) 62. \(\ln \dfrac{e^{3}}{3}\) |
\( \bigstar \) In the following exercises, use the Power Property of Logarithms to expand each. Simplify if possible.
63. \(\log _{2} x^{5}\) 64. \(\log _{3} x^{2}\) |
65. \(\log x^{-3}\) 66. \(\log x^{-2}\) |
67. \(\log _{5} \sqrt[3]{x}\) 68. \(\log _{4} \sqrt{x}\) |
69. \(\ln x^{\sqrt[3]{4}}\) 70. \(\ln x^{\sqrt{3}}\) |
- Answers to odd exercises:
-
49. \(\log _{5} 8+\log _{5} y\)
51. \(4+\log _{3} x+\log _{3} y\)
53. \(3+\log y\)
55. \(\log _{6} 5-1\)
57. \(3-\log _{5} x\)
59. \(4-\log y\)
61. \(4-\ln 16\)
63. \(5\log _{2} x\)
65. \(-3 \log x\)
67. \(\frac{1}{3} \log _{5} x\)
69. \(\sqrt[3]{4} \ln x\)
D: Expand logarithms
Exercise \(\PageIndex{D}\)
\( \bigstar \) In the following exercises, use the Properties of Logarithms to expand the logarithm. Simplify if possible.
71. \(\log _{2}\left(3 x^{5} y^{3}\right) \\[6pt] \) 72. \(\log _{5}\left(4 x^{6} y^{4}\right) \\[6pt] \) 73. \(\log _{5}\left(\sqrt[4]{21} y^{3}\right) \\[6pt] \) 74. \(\log _{3}\left(\sqrt{2} x^{2}\right) \\[6pt] \) 75.\(\log _{4}(x y) \\[6pt] \) 76. \(\log (6 x)\) |
77. \(\log _{3}\left(9 x^{2}\right) \\[6pt] \) 78. \(\log _{2}\left(32 x^{7}\right) \\[6pt] \) 79. \(\ln \left(3 y^{2}\right) \\[6pt] \) 80. \(\log \left(100 x^{2}\right) \\[6pt] \) 81. \(\log \left(10 x^{2} y^{3}\right) \\[6pt] \) 82. \(\log _{2}\left(2 x^{4} y^{5}\right) \\[6pt] \) |
83. \(\log _{6}\left(36(x+y)^{4}\right) \\[6pt] \) 84. \(\ln \left[(e^{4}(x-y)^{3}\right) \\[6pt] \) 85. \(\log _{7}(2 \sqrt{x y}) \\[6pt] \) 86. \(\ln (2 x \sqrt{y}) \\[6pt] \) 87. \(\log _b (7x\cdot 2y) \\[6pt] \) 88. \(\ln (3ab\cdot 5c) \\[6pt] \) |
89. \(\log \left ( \sqrt{x^3y^{-4}} \right ) \\[6pt] \) 90. \(\log _2 (y^x) \\[6pt] \) 91. \(\log \left ( x^2y^3 \sqrt[3]{x^2y^5} \right ) \\[6pt] \) 92. \(\log (x^4y) \\[6pt] \) 93. \(\log_5\sqrt{125xy^3} \\[6pt] \) 94. \(\ln (a\sqrt[3]{b}) \\[6pt] \) |
- Answers to odd exercises:
-
71. \(\log _{2} 3+5 \log _{2} x+3 \log _{2} y\)
73. \(\frac{1}{4} \log _{5} 21+3 \log _{5} y\)
75. \(\log _{4} x+\log _{4} y\)
77. \(2+2 \log _{3} x\)
79. \(\ln 3+2 \ln y\)
81. \(1+2 \log x+3 \log y\)
83. \(2+4 \log _{6}(x+y)\)
85. \(\log _{7} 2+\frac{1}{2} \log _{7} x+\frac{1}{2} \log _{7} y\)
87. \(\log _b 14 +\log _b (x)+\log _b (y)\)
89. \(\frac{3}{2}\log (x)-2\log (y)\)
91. \(\frac{8}{3}\log (x)+\frac{14}{3}\log (y)\)
93: \(\frac{3}{2}+\frac{1}{2}log_5x+\frac{3}{2}log_5y\)
\( \bigstar \) In the following exercises, use the Properties of Logarithms to expand the logarithm. Simplify if possible.
95. \(\log _{5} \dfrac{4 a b^{3} c^{4}}{d^{2}} \\[6pt] \) 96. \(\log _{3} \dfrac{x y^{2}}{z^{2}} \\[6pt] \) 97. \(\log _{2}\left(\dfrac{x}{y^{2}}\right) \\[6pt] \) 98. \(\log _{5}\left(\dfrac{25}{x}\right) \\[6pt] \) |
99. \(\log _{3}\left(\dfrac{x^{3}}{y z^{2}}\right) \\[6pt] \) 100. \(\log \left(\dfrac{x}{y^{3} z^{2}}\right) \\[6pt] \) 101. \(\log _{5}\left(\dfrac{1}{x^{2} y z}\right) \\[6pt] \) 102. \(\log _{4}\left(\dfrac{1}{16 x^{2} z^{3}}\right) \\[6pt] \) |
103. \(\log \left(\dfrac{100 x^{3}}{(y+10)^{3}}\right) \\[6pt] \) 104. \(\log \left(\dfrac{2(x+y)^{3}}{z^{2}}\right) \\[6pt] \) 105. \(\log_b \left ( \dfrac{13}{17} \right ) \\[6pt] \) 106. \(\log_4 \left ( \dfrac{\frac{x}{z}}{w} \right ) \\[6pt] \) |
107. \(\ln \left ( \dfrac{1}{4e^k} \right ) \\[6pt] \) 108. \(ln \dfrac{9e^5}{4b} \\[6pt] \) 109. \(\log \left ( \dfrac{x^{15}y^{13}}{z^{19}} \right ) \\[6pt] \) 110. \(\ln \left ( \dfrac{a^{-2}}{b^{-4}c^{5}} \right ) \\[6pt] \) |
- Answers to odd exercises:
-
95. \(\log _{5} 4+\log _{5} a+3 \log _{5} b \\
+4 \log _{5} c-2 \log _{5} d\)97. \(\log _{2} x-2 \log _{2} y\)
99. \(3 \log _{3} x-\log _{3} y-2 \log _{3} z\)
101. \(-2 \log _{5} x-\log _{5} y-\log _{5} z\)
103. \(2+3 \log x-3 \log (y+10)\)
105. \(\log _b (13)-\log _b (17)\)
107. \(-\ln(4) - k\)
109. \(15\log (x)+13\log (y)-19\log (z)\)
\( \bigstar \) In the following exercises, use the Properties of Logarithms to expand the logarithm. Simplify if possible.
111. \(\log _{3} \dfrac{\sqrt[3]{x^{2}}}{27 y^{4}} \\[6pt] \) 112. \(\log _{4} \dfrac{\sqrt{x}}{16 y^{4}} \\[6pt] \) 113. \(\log _{3} \dfrac{\sqrt{3 x+2 y^{2}}}{5 z^{2}} \\[6pt] \) 114. \(\log _{2} \dfrac{\sqrt{2 x+y^{2}}}{8 z^{2}} \\[6pt] \) |
115. \(\log _{5} \sqrt[3]{\dfrac{3 x^{2}}{4 y^{3} z}} \\[6pt] \) 116. \(\log _{2} \sqrt[4]{\dfrac{5 x^{3}}{2 y^{2} z^{4}}} \\[6pt] \) 117. \(\log _{3}\left(\dfrac{x^{2} \sqrt[3]{y}}{z}\right) \\[6pt] \) |
118. \(\log _{7}\left(\dfrac{x}{\sqrt[5]{(y+z)^{3}}}\right) \\[6pt] \) 119. \(\log _{5}\left(\dfrac{x^{3}}{\sqrt[3]{y z^{2}}}\right) \\[6pt] \) 120. \(\log \left(\dfrac{x^{2}}{\sqrt[5]{y^{3} z^{2}}}\right) \\[6pt] \) |
122. \(\ln \left ( y\sqrt{\dfrac{y}{1-y}} \right ) \\[6pt] \) 123. \(\ln(\dfrac{6}{\sqrt{e^3}})\) 124. \(\log_4\dfrac{\sqrt[3]{xy}}{64} \\[6pt] \) |
- Answers to odd exercises:
-
111. \(\frac{2}{3} \log _{3} x-3-4 \log _{3} y \\[6pt] \)
113. \(\frac{1}{2} \log _{3}\left(3 x+2 y^{2}\right)-\log _{3} 5-2 \log _{3} z\)
115. \(\frac{1}{3} \left( \log _{5} 3+2 \log _{5} x-\log _{5} 4\right) \\
-3 \log _{5} y-\log _{5} z ) \)117. \(2 \log _{3} x+\frac{1}{3} \log _{3} y-\log _{3} z\)
119. \(3 \log _{5} x-\frac{1}{3} \log _{5} y-\frac{2}{3} \log _{5} z \\[6pt] \)
123: \(−\frac{3}{2}+\ln6\)
E: Apply Log Properties
Exercise \(\PageIndex{E}\)
\( \bigstar \) Given \(\log _{3} x=a, \log _{3} y=b\), and \(\log _{3} z=c\), write the following logarithms in terms of \(a, b\), and and \(c\).
125. \(\log _{3}\left(27 x^{2} y^{3} z\right)\) | 126. \(\log _{3}\left(x y^{3} \sqrt{z}\right)\) | 127. \(\log _{3}\left(\frac{9 x^{2} y}{z^{3}}\right)\) | 128. \(\log _{3}\left(\frac{\sqrt[3]{x}}{y z^{2}}\right)\) |
\( \bigstar \) Given \(\log _{b} 2=0.43, \log _{b} 3=0.68\), and \(\log _{b} 7=1.21\), calculate the following. (Hint: Expand using sums, differences, and quotients of the factors \(2, 3\), and \(7\).)
129. \(\log _{b} 42\) | 130. \(\log _{b}(36)\) | 131. \(\log _{b}\left(\frac{28}{9}\right)\) | 132. \(\log _{b} \sqrt{21}\) |
\( \bigstar \) Expand using the properties of the logarithm and then approximate using a calculator to the nearest tenth.
133. \(\log \left(3.10 \times 10^{25}\right)\) | 134. \(\log \left(1.40 \times 10^{-33}\right)\) | 135. \(\ln \left(6.2 e^{-15}\right)\) | 136. \(\ln \left(1.4 e^{22}\right)\) |
- Answers to odd exercises:
-
125. \(3+2 a+3 b+c\) \(\;\;\) 127. \(2+2 a+b-3 c\) \(\;\;\) 129. \(2.32\) \(\;\;\) 131. \(0.71\) \(\;\;\) 133. \(\log (3.1)+25 \approx 25.5 \) \( \;\; \) 135. \(\ln (6.2)-15 \approx-13.2\)
F: Condense Logarithms
Exercise \(\PageIndex{F}\)
\( \bigstar \) For the following exercises, condense each expression to a single logarithm with a coefficient \(1\) using the properties of logarithms.
137. \(\log x+\log y\) 138. \(\log _{3} x-\log _{3} y\) 139. \(\log_b(28)-\log_b(7)\) 140. \(\ln (a)-\ln (d)-\ln (c)\) 141. \(\ln (7)+\ln (x)+\ln (y)\) 142. \(\log_3 2+\log_3 a +\log_3 11+\log_3 b \) 143. \(\ln \left ( 6x^9 \right )-\ln \left (3x^2 \right )\) 144. \(\log \left ( 2x^4 \right )+\log \left (3x^5 \right )\) |
145. \(\log 4+\log 25\) 146. \(\log _{6} 4+\log _{6} 9\) 147. \(\log _{3} 36-\log _{3} 4\) 148. \(\log _{2} 80-\log _{2} 5\) 149. \(\log _{2} 5-\log _{2}(x-1)\) 150. \(\log _{3} 4+\log _{3}(x+1)\) 151. \(\log _{5} 2-\log _{5} x-\log _{5} y\) 152. \(\log _{7} 3+\log _{7} x-\log _{7} y\) |
153. \(\log (x+1)+\log (x-1)\) 154. \(\log _{2}(x+2)+\log _{2}(x+1)\) 155. \(\ln \left(x^{2}+2 x+1\right)-\ln (x+1)\) 156. \(\ln \left(x^{2}-9\right)-\ln (x+3)\) 157. \(\log _{5}\left(x^{3}-8\right)-\log _{5}(x-2)\) 158. \(\log _{3}\left(x^{3}+1\right)-\log _{3}(x+1)\) 159. \(\log x+\log (x+5)-\log \left(x^{2}-25\right)\) 160. \(\log (2 x+1)+\log (x-3) \\ |
- Answers to odd exercises:
-
137. \(\log (x y)\)
139. \(\log_b(4)\)
141. \(\ln(7xy)\)
143. \(\ln \left ( 2x^7 \right )\)
145. \(2\)
147. \(2\)
149. \(\log _{2} \frac{5}{x-1}\)
151. \(\log _{5} \frac{2}{x y}\)
153. \(\log \left(x^{2}-1\right)\)
155. \(\ln (x+1)\)
157. \(\log _{5}\left(x^{2}+2 x+4\right)\)
159. \(\log \left(\frac{x}{x-5}\right)\)
\( \bigstar \) For the following exercises, condense each expression to a single logarithm with a coefficient \(1\) using the properties of logarithms.
161. \(-\log_b\left ( \frac{1}{7} \right )\) 162. \(\frac{1}{3}\ln(8)\) 163. \(6 \log _{3} x+9 \log _{3} y\) 164. \(4 \log _{2} x-6 \log _{2} y\) 165. \(\frac{1}{3} \log _{2} x+\frac{2}{3} \log _{2} y\) 166. \(-2 \log _{5} x+\frac{3}{5} \log _{5} y\) 167. \(\log 5+3 \log (x+y)\) 168. \(4 \log _{5}(x+5)+\log _{5} y \) |
169. \(2 \log (2 x+3)+\frac{1}{2} \log (x+1)\) 170. \(\frac{1}{3} \log x-3 \log (x+1)\) 171. \(\frac{2}{3} \log _{3} x-\frac{1}{2}\left(\log _{3} y+\log _{3} z\right)\) 172. \(\log _{3}\left(x^{2}-1\right)-2 \log _{3}(x-1)\) 173. \(\log \left(x^{2}+2 x+1\right)-2 \log (x+1)\) 178. \(\frac{1}{5}\left(\log _{7} x+2 \log _{7} y\right)-2 \log _{7}(z+1)\) 174) \(2\log (x)+3\log (x+1)\) 175. \(\frac{1}{3}(\ln x+2 \ln y)-(3 \ln 2+\ln z)\) |
- Answers to odd exercises:
-
161. \(\log_b(7)\)
163. \(\log _{3} x^{6} y^{9}\)
165. \(\log _{2}\left(\sqrt[3]{x y^{2}}\right)\)
167. \(\log \left(5(x+y)^{3}\right)\)
169. \(\log (2 x+3)^{2} \cdot \sqrt{x+1}\)
171. \(\log _{3}\left(\dfrac{\sqrt[3]{x^{2}}}{\sqrt{y z}}\right)\)
173. \(0\)
175. \(\ln \left(\dfrac{\sqrt[3]{x y^{2}}}{8 z}\right)\)
\( \bigstar \) For the following exercises, condense each expression to a single logarithm with a coefficient \(1\) using the properties of logarithms.
176. \(4\log _7(c)+\frac{\log _7(a)}{3}+\frac{\log _7(b)}{3}\) 177. \(3 \ln x+4 \ln y-2 \ln z\) 178. \(4 \log x-2 \log y-3 \log z\) 179. \(\log _{2} 5+2 \log _{2} x+\log _{2} y\) 180. \(\log _{3} 4+3 \log _{3} x+\frac{1}{2} \log _{3} y\) 181. \(3 \log _{2} x-2 \log _{2} y+\frac{1}{2} \log _{2} z\) 182. \(4 \log x-\log y-\log 2\) 183. \(\ln x-6 \ln y+\ln z\) 184. \(\log _{3} x-2 \log _{3} y+5 \log _{3} z\) 185. \(7 \log x-\log y-2 \log z\) |
186. \(2 \ln x-3 \ln y-\ln z\) 187. \(1+\log _{2} x-\frac{1}{2} \log _{2} y\) 188. \(2-3 \log _{3} x+\frac{1}{3} \log _{3} y\) 189. \(-\ln 2+2 \ln (x+y)-\ln z\) 190. \(-3 \ln (x-y)-\ln z+\ln 5\) 191. \(\log (x)-\frac{1}{2}\log (y)+3\log (z)\) 192. \(4 \log 2+\frac{2}{3} \log x-4 \log (y+z)\) 193. \(\log _{2} 3-2 \log _{2} x+\frac{1}{2} \log _{2} y-4 \log _{2} z\) 194. \(2 \log _{5} 4-\log _{5} x-3 \log _{5} y+\frac{2}{3} \log _{5} z\) |
- Answers to odd exercises:
-
177. \(\ln \frac{x^{3} y^{4}}{z^{2}}\)
179. \(\log _{2}\left(5 x^{2} y\right)\)
181. \(\log _{2}\left(\frac{x^{3} \sqrt{z}}{y^{2}}\right)\)
183. \(\ln \left(\frac{x z}{y^{6}}\right)\)
185. \(\log \left(\frac{x^{7}}{y z^{2}}\right)\)
187. \(\log _{2}\left(\frac{2 x}{\sqrt{y}}\right)\)
189. \(\ln \left(\dfrac{(x+y)^{2}}{2 z}\right)\)
191. \(\log \left ( \dfrac{xz^3}{\sqrt{y}} \right )\)
193. \(\log _{2}\left(\frac{3 \sqrt{y}}{x^{2} z^{4}}\right)\)
G: Use the Change of Base Formula
Exercise \(\PageIndex{G}\)
\( \bigstar \) For the following exercises, rewrite each expression as an equivalent ratio of logs using the indicated base.
197. \(\log _7(15)\) to base \(e\) | 198. \(\log _{14}(55.875)\) to base \(10\) |
199. \(\log _3 (22)\) 200. \(\log _8 (65)\) 201. \(\log _6 (5.38)\) |
202. \(\log _4 \left (\frac{15}{2} \right )\) 203. \(\log _{\frac{1}{2}} (4.7)\) 204. \(\log _{3} 42\) |
205. \(\log _{5} 46\) 206. \(\log _{12} 87\) 207. \(\log _{15} 93\) |
208. \(\log _{\sqrt{2}} 17\) 209. \(\log _{\sqrt{3}} 21\) 210. \(\log_547\) |
211. \(\log_782\) 212. \(\log_6103\) 213. \(\log_{0.5}211\) |
214. \(\log_2π\) 215. \(\log_{0.2}0.452\)
|
\( \bigstar \) For the following exercises, suppose \(\log _5(6)=a\) and \(\log _5(11)=b\). Use the change-of-base formula along with properties of logarithms to rewrite each expression in terms of \(a\) and \(b\). Show the steps for solving.
216. \(\log _{11} (5)\) | 217. \(\log _{6} (55)\) | 218. \(\log _{11}\left (\dfrac{6}{11} \right )\) |
- Answers to odd exercises:
-
197. \(\dfrac{\ln (15)}{\ln (7)} \approx 1.3917 \)
199. \( \dfrac{ \ln(22)}{ \ln(3)} \approx 2.8136\)
201.\(\dfrac{ \ln(5.38)}{ \ln(6)} \approx 0.9391\)
203. \( \dfrac{ \ln(4.7)}{ \ln(.5)} \approx -2.2327\)
205. \(\dfrac{ \ln(46)}{ \ln(5)} \approx 2.3789\)
207. \( \dfrac{ \ln(93)}{ \ln(15)} \approx 1.6738\)
209. \( \dfrac{ \ln(21)}{ \ln( \sqrt{3}} \approx 5.5425\)
211. \(\dfrac{\log82}{\log7}≈2.2646\)
213. \(\dfrac{\log211}{\log0.5}≈−7.7211\)
215. \(\dfrac{\log0.452}{\log0.2}≈0.4934\)
217. \(\dfrac{\log_5 (5\cdot 11)}{\log_5 (6)}=\dfrac{1+b}{a}\)
H: "Extensions"
Exercise \(\PageIndex{H}\)
220. Use the product rule for logarithms to find all \(x\) values such that \(\log _{12} (2x+6)+\log _{12} (x+2)=2\)
221. Use the quotient rule for logarithms to find all \(x\) values such that \(\log _{6} (x+2)-\log _{6} (x-3)=1\)
222. Can the power property of logarithms be derived from the power property of exponents using the equation \(b^x=m\)If not, explain why. If so, show the derivation.
223. Prove that \(\log_b(n)=\frac{1}{\log_n(b)}\) for any positive integers \(b>1\) and \(n>1\)
224. Does \(\log_{81}(2401)=\log_3(7)\) ? Verify the claim algebraically.
- Answers to odd exercises:
-
221. Rewriting as an exponential equation and solving for \(x\): \( 6^1 = \frac{x+2}{x-3} \rightarrow 0 = \frac{x+2}{x-3}-6= \frac{x+2}{x-3}-\frac{6(x-3)}{(x-3)} = \frac{x+2-6x+18}{x-3} = \frac{x-4}{x-3} \rightarrow x = 4\). Checking, we find that \(\log _6(4+2)-\log _6(4-3)=\log _6(6)-\log _6(1)\) is defined, so \(x=4\)
223. Let \(b\) and \(n\) be positive integers \( > 1\) . By the change-of-base formula, \(\log_b(n)=\frac{\log_n(n)}{\log_n(b)}=\frac{1}{\log_n(b)}\)