Skip to main content
Mathematics LibreTexts

7.5e: The Dot Product

  • Page ID
    68250
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A:  Evaluate the Dot Product    

    Exercise \(\PageIndex{A}\)

    Given vectors \(\vecs u\) and \(\vecs v\), calculate the dot product \(\vecs u \cdot \vecs v\)  

    1) \(\quad \vecs{u}=⟨3,0⟩, \quad \vecs{v}=⟨2,2⟩\)

    2) \(\quad \vecs{u}=⟨3,−4⟩, \quad \vecs{v}=⟨4,3⟩\)

    3) \(\quad \vecs{u}=⟨2,2,−1⟩, \quad \vecs{v}=⟨−1,2,2⟩\)

    4) \(\quad \vecs{u}=⟨4,5,−6⟩, \quad \vecs{v}=⟨0,−2,−3⟩\)

    5) \(\quad \vecs u=\left \langle -1,6 \right \rangle, \quad \vecs v=\left \langle 6,-1 \right \rangle\) 

    6) \(\quad \vecs u=\left \langle -2,4 \right \rangle, \quad \vecs v=\left \langle -3,1 \right \rangle\)

    7) \(\quad \vecs u = −\mathbf{\hat i} − \mathbf{\hat j}, \quad \vecs v = \mathbf{\hat i} + 5\mathbf{\hat j}\)

    8) \(\quad \vecs u = 3\mathbf{\hat i} − 4\mathbf{\hat j}, \quad \vecs v = −2\mathbf{\hat i} + 3\mathbf{\hat j}\)

    Given vectors \(\vecs{a}, \,\vecs{b}\), and \(\vecs{c}\), determine the vectors \((\vecs{a}\cdot\vecs{b})\vecs{c}\) and \((\vecs{a}⋅\vecs{c})\vecs{b}.\) Express the vectors in component form.

    11) \(\quad \vecs{a}=⟨2,0,−3⟩, \quad \vecs{b}=⟨−4,−7,1⟩, \quad \vecs{c}=⟨1,1,−1⟩\)

    12) \(\quad \vecs{a}=⟨0,1,2⟩, \quad \vecs{b}=⟨−1,0,1⟩, \quad \vecs{c}=⟨1,0,−1⟩\)

    13) \(\quad \vecs{a}=\mathbf{\hat i} +\mathbf{\hat j} , \quad \vecs{b}=\mathbf{\hat i} −\mathbf{\hat k} , \quad \vecs{c}=\mathbf{\hat i} −2\mathbf{\hat k} \)

    14) \(\quad \vecs{a}=\mathbf{\hat i} −\mathbf{\hat j} +\mathbf{\hat k} , \quad \vecs{b}=\mathbf{\hat j} +3\mathbf{\hat k} , \quad \vecs{c}=−\mathbf{\hat i} +2\mathbf{\hat j} −4\mathbf{\hat k} \)

    Answers to odd exercises: 
    1. \(6 \qquad\) 3. \(0 \qquad\) 5. \(-12 \qquad \) 7. \(-6 \qquad\) 11.  \( (\vecs a⋅\vecs b)\vecs c=⟨−11,−11,11⟩; \quad  (\vecs a⋅\vecs c)b=⟨−20,−35,5⟩\)
    13.  \( (\vecs a⋅\vecs b)\vecs c=⟨1,0,−2⟩; \quad (\vecs a⋅\vecs c)\vecs b=⟨1,0,−1⟩\)

    B:  Find the angle between 2 Vectors

    Exercise \(\PageIndex{B}\) 

    Given two vectors,

    a. Find the measure of the angle \(\displaystyle θ\) between a and b. Express the answer in degrees rounded to the nearest tenth, if it is not possible to express it exactly.

    b. Is \( θ\) an acute angle?

    21)   \(\quad \vecs{a}=⟨3,−1⟩, \quad \vecs{b}=⟨−4,0⟩\)

    22)  \(\quad \vecs{a}=⟨2,1⟩, \quad \vecs{b}=⟨−1,3⟩\)

    23) \(\quad \vecs{u}=3\mathbf{\hat i}, \quad \vecs{v}=4\mathbf{\hat i} +4\mathbf{\hat j} \)

    24) \(\quad \vecs{u}=5\mathbf{\hat i}, \quad \vecs{v}=−6\mathbf{\hat i} +6\mathbf{\hat j} \)

    Find the measure of the angle between the three-dimensional vectors \(\vecs{a}\) and \(\vecs{b}\). Express the answer in degrees rounded to the nearest tenth, if it is not possible to express it exactly.

    25) \(\quad \vecs{a}=⟨3,−1,2⟩, \quad \vecs{b}=⟨1,−1,−2⟩\)

    26) \(\quad \vecs{a}=⟨0,−1,−3⟩, \quad \vecs{b}=⟨2,3,−1⟩\)

    27) \(\quad \vecs{a}=\mathbf{\hat i} +\mathbf{\hat j} , \quad \vecs{b}=\mathbf{\hat j} −\mathbf{\hat k} \)

    28) \(\quad \vecs{a}=\mathbf{\hat i} −2\mathbf{\hat j} +\mathbf{\hat k} , \quad \vecs{b}=\mathbf{\hat i} +\mathbf{\hat j} −2\mathbf{\hat k} \)

    29) \(\quad \vecs{a}=3\mathbf{\hat i} −\mathbf{\hat j} −2\mathbf{\hat k} , \quad \vecs{b}=\vecs v+\vecs w,\) where \(\quad \vecs{v}=−2\mathbf{\hat i} −3\mathbf{\hat j} +2\mathbf{\hat k} \) and \(\vecs{w}=\mathbf{\hat i} +2\mathbf{\hat k} \)

    30) \(\quad \vecs{a}=3\mathbf{\hat i} −\mathbf{\hat j} +2\mathbf{\hat k} , \quad \vecs{b}=\vecs v−\vecs w,\) where \(\quad \vecs{v}=2\mathbf{\hat i} +\mathbf{\hat j} +4\mathbf{\hat k} \) and \(\vecs{w}=6\mathbf{\hat i} +\mathbf{\hat j} +2\mathbf{\hat k} \)

    33) Consider the points \(P(4,5)\) and \(Q(5,−7)\), and note that \(O\) represents the origin.

    a. Determine vectors \(\vecd{OP}\) and \(\vecd{OQ}\). Express the answer by using standard unit vectors.

    b. Determine the measure of angle \(O\) in triangle \(OPQ\). Express the answer in degrees rounded to two decimal places.

    34) Consider points \( A(1,1), B(2,−7),\) and \(C(6,3)\).

    a. Determine vectors \( \vecd{BA}\) and \(\vecd{BC}\). Express the answer in component form.

    b. Determine the measure of angle \(B\) in triangle \(ABC\). Express the answer in degrees rounded to two decimal places.

    35) Determine the measure of angle \(A\) in triangle \(ABC\), where \(A(1,1,8), B(4,−3,−4),\) and \(C(−3,1,5).\) Express your answer in degrees rounded to two decimal places.

    36) Consider points \(\displaystyle P(3,7,−2)\) and \(\displaystyle Q(1,1,−3)\), with \(O\) representing the origin. Determine the angle between vectors \(\vecd{OP}\) and \(\displaystyle \vec{OQ}\). Express the answer in degrees rounded to two decimal places.

    This figure is the 3-dimensional coordinate system. There are four points plotted. The first point is labeled “P(1, 1, -1),” the second point is labeled “Q(1, -1, 1),” the third point is labeled “R(-1, 1, 1),” and the fourth point is labeled “S(-1, -1, -1).” There are line segments from Q to P, P to R and R to P. There are also two vectors in standard position. The first has terminal point of R and the second has terminal point of S. The angle between them is represented with an arc.37. A methane molecule has a carbon atom situated at the origin and four hydrogen atoms located at points \(\displaystyle P(1,1,−1),Q(1,−1,1),R(−1,1,1),\) and \(\displaystyle S(−1,−1,−1)\) (see figure). 

    a. Find the distance between the hydrogen atoms located at P and R.

    b. Find the angle between vectors \(\displaystyle \vec{OS}\) and \(\displaystyle \vec{OR}\) that connect the carbon atom with the hydrogen atoms located at S and R, which is also called the bond angle. Express the answer in degrees rounded to two decimal places.

    38. Find the vectors that join the center of a clock to the hours 1:00, 2:00, and 3:00. Assume the clock is circular with a radius of 1 unit.

    Answers to odd exercises: 

    21. \(\displaystyle a. θ= 161.6°\); \(  \displaystyle b. θ\) is not acute.     23. \(\displaystyle a. θ=45°\); \( \; \displaystyle b. θ\) is acute.    25. \(\displaystyle θ=90°\)     27. \(\displaystyle θ=60°\)   
    29. \(\displaystyle θ=114.6°\)     33. a. \(\vecd{OP}=4\mathbf{\hat i} +5\mathbf{\hat j}, \; \vecd{OQ}=5\mathbf{\hat i} −7\mathbf{\hat j} \)  b. \(105.8°\)     35.  \(\displaystyle 68.33°\)     37. \(\displaystyle a. \;  2\sqrt{2}; \; b. \; 109.47°\)

    D:  Orthogonality

    Exercise \(\PageIndex{D}\) 

    Determine whether the given vectors are orthogonal.

    41) \(\quad \vecs{a}=⟨x,y⟩, \quad \vecs{b}=⟨−y, x⟩\), where \(x\) and \(y\) are nonzero real numbers

    42) \(\quad \vecs{a}=⟨x, x⟩, \quad \vecs{b}=⟨−y, y⟩\), where \(x\) and \(y\) are nonzero real numbers

    43) \(\quad \vecs{a}=3\mathbf{\hat i} −\mathbf{\hat j} −2\mathbf{\hat k} , \quad \vecs{b}=−2\mathbf{\hat i} −3\mathbf{\hat j} +\mathbf{\hat k} \)

    44) \(\quad \vecs{a}=\mathbf{\hat i} −\mathbf{\hat j} , \quad \vecs{b}=7\mathbf{\hat i} +2\mathbf{\hat j} −\mathbf{\hat k} \)

    45) Determine the real number \(α\) such that vectors \(\vecs a=2\mathbf{\hat i} +3\mathbf{\hat j} \) and \(\vecs b=9\mathbf{\hat i} +α\mathbf{\hat j} \) are orthogonal.

    46) Determine the real number \(α\) such that vectors \(\vecs a=−3\mathbf{\hat i} +2\mathbf{\hat j} \) and \(\vecs b=2\mathbf{\hat i} +α\mathbf{\hat j} \) are orthogonal.

    Determine which (if any) pairs of the following vectors are orthogonal.

    47) \(\quad\vecs u=⟨3,7,−2⟩, \quad \vecs v=⟨5,−3,−3⟩, \quad \vecs w=⟨0,1,−1⟩\)

    48) \(\quad\vecs u=\mathbf{\hat i} −\mathbf{\hat k} , \quad \vecs v=5\mathbf{\hat j} −5\mathbf{\hat k} , \quad \vecs w=10\mathbf{\hat j} \)

    Answers to odd exercises: 
    41. Orthogonal  \( \qquad \)  43. Not orthogonal  \( \qquad \)  45. \(\displaystyle α=−6\) \( \qquad \)  
    47. \(\vecs u\) and \(\vecs v\) are orthogonal; \(\vecs v\) and \(\vecs w\) are orthogonal, but \(\vecs u\) and \(\vecs w\) are not orthogonal.

    E:  Projections

    Exercise \(\PageIndex{E}\) 

    For the following exercises, the vectors \(\vecs u\) and \(\vecs v\) are given.

    a. Find the vector projection \(\text{Proj}_\vecs{u}\vecs v\) of vector \(\vecs v\) onto vector \(\vecs u\) and the component of \(\vecs v\) that is orthogonal to \(\vecs u\), i.e., \(\vecs v_\text{perp}\). Express your answers in component form.

    b. Find the magnitude of the projection, \(  \| \text{Proj}_\vecs{u}\vecs v \|, \) of vector \(\vecs v\) onto vector \(\vecs u\).

    c. Find the vector projection \(\text{Proj}_\vecs{v}\vecs u\) of vector \(\vecs u\) onto vector \(\vecs v\) and the component of \(\vecs u\) that is orthogonal to \(\vecs v\), i.e., \(\vecs u_\text{perp}\). Express your answers in unit vector form.

    d. Find the magnitude of the projection, \(  \| \text{Proj}_\vecs{v}\vecs u \|, \) of vector \(\vecs u\) onto vector \(\vecs v\).

    51. \(\quad\vecs u=5\mathbf{\hat i} +2\mathbf{\hat j} , \quad \vecs v=2\mathbf{\hat i} +3\mathbf{\hat j} \)

    52. \(\quad\vecs u=⟨4,4,0⟩, \quad \vecs v=⟨0,4,1⟩\)

    53. \(\quad\vecs u=3\mathbf{\hat i} +2\mathbf{\hat k} , \quad \vecs v=2\mathbf{\hat j} +4\mathbf{\hat k} \)

    55. Consider the vectors \(\vecs u=4\mathbf{\hat i} −3\mathbf{\hat j} \) and \(\vecs v=3\mathbf{\hat i} +2\mathbf{\hat j} .\)

    a. Find the component form of vector \(\text{Proj}_\vecs{u}\vecs v\) that represents the projection of \(\vecs v\) onto \(\vecs u\)..

    b. Write the decomposition \(\vecs v=\vecs w+\vecs q\) of vector \(\vecs v\) into the orthogonal components \(\vecs w\) and \(\vecs q\), where \(\vecs w\) is the projection of \(\vecs v\) onto \(\vecs u\) and \(\vecs q\) is the vector component of \(\vecs v\) orthogonal to the direction of \(\vecs u\). That is, \( \vecs q = \vecs v_\text{perp}\).

    56. Consider vectors \(\vecs u=2\mathbf{\hat i} +4\mathbf{\hat j} \) and \(\vecs v=4\mathbf{\hat j} +2\mathbf{\hat k} .\)

    a. Find the component form of vector \(\vecs w=\text{Proj}_\vecs{u}\vecs v\) that represents the projection of \(\vecs v\) onto \(\vecs u\).b. Write the decomposition \(\vecs v=\vecs w+\vecs q\) of vector \(\vecs v\) into the orthogonal components \(\vecs w\) and \(\vecs q\), where \(\vecs w\) is the projection of \(\vecs v\) onto \(\vecs u\) and \(\vecs q\) is a vector orthogonal to the direction of \(\vecs u\).

    Answers to odd exercises: 
    51. a. \(\text{Proj}_\vecs{u}\vecs v =⟨\frac{80}{29},\frac{32}{29}⟩\) and \(\vecs v_\text{perp} = <-\frac{22}{29}, \frac{55}{29}>\);
         b. \(   \| \text{Proj}_\vecs{u}\vecs v \|     =\frac{16}{\sqrt{29}} = \frac{16\sqrt{29}}{29};\)
         c. \(\text{Proj}_\vecs{v}\vecs u = \frac{32}{13}\mathbf{\hat i} + \frac{48}{13}\mathbf{\hat j} \) and \(\vecs u_\text{perp} = \frac{33}{13}\mathbf{\hat i} - \frac{22}{13}\mathbf{\hat j} \);
         d. \(   \| \text{Proj}_\vecs{v}\vecs u \| =\frac{16}{\sqrt{13}}=\frac{16\sqrt{13}}{13}\)
    53. a. \(\text{Proj}_\vecs{u}\vecs v =⟨\frac{24}{13},0,\frac{16}{13}⟩\) and \(\vecs v_\text{perp} = <-\frac{24}{13}, \frac{26}{13}, \frac{36}{13}>\);
         b. \(  \| \text{Proj}_\vecs{u}\vecs v \|     =\frac{8}{\sqrt{13}}=\frac{8\sqrt{13}}{13}\)
         c. \(\text{Proj}_\vecs{v}\vecs u =\frac{4}{5}\mathbf{\hat j} + \frac{8}{5}\mathbf{\hat k} \) and \(\vecs u_\text{perp} = 3\mathbf{\hat i} - \frac{4}{5}\mathbf{\hat j} + \frac{2}{5}\mathbf{\hat k} \);
         d. \(   \| \text{Proj}_\vecs{v}\vecs u \|  =\frac{\sqrt{80}}{5}  = \frac{4\sqrt{5}}{5};\)
    55. a. \(\text{Proj}_\vecs{u}\vecs v=⟨\frac{24}{25},−\frac{18}{25}⟩\);
         b. \(\vecs q = \vecs v_\text{perp} =⟨\frac{51}{25},\frac{68}{25}⟩\),
    \(\vecs v =\vecs w+\vecs q= \text{Proj}_\vecs{u}\vecs v + \vecs v_\text{perp} =⟨\frac{24}{25},−\frac{18}{25}⟩+⟨\frac{51}{25},\frac{68}{25}⟩\)
    So we have that, \(\vecs v = ⟨\frac{24}{25},−\frac{18}{25}⟩+⟨\frac{51}{25},\frac{68}{25}⟩\).

    F:  Dot Product Applications

    Exercise \(\PageIndex{F}\) 

    61. Find the work done by force \(\vecs F=⟨5,6,−2⟩\) (measured in Newtons) that moves a particle from point \(\displaystyle P(3,−1,0)\) to point \(\displaystyle Q(2,3,1)\) along a straight line (the distance is measured in meters).

    62. A sled is pulled by exerting a force of 100 N on a rope that makes an angle of \(\displaystyle 25°\) with the horizontal. Find the work done in pulling the sled 40 m. (Round the answer to one decimal place.)

    This figure is an image of a person pulling a child on a sled. The rope for pulling the sled is represented by a vector and labeled “25 lb.” There is an angle between the rope vector and the horizontal ground of 20 degrees.63. A father is pulling his son on a sled at an angle of \(\displaystyle 20°\)with the horizontal with a force of 25 lb (see the following image). He pulls the sled in a straight path of 50 ft. How much work was done by the man pulling the sled? (Round the answer to the nearest integer.)

     

    64. A car is towed using a force of 1600 N. The rope used to pull the car makes an angle of 25° with the horizontal. Find the work done in towing the car 2 km. Express the answer in joules \(\displaystyle (1J=1N⋅m)\) rounded to the nearest integer.

    65. A boat sails north aided by a wind blowing in a direction of \(\displaystyle N30°E\) with a magnitude of 500 lb. How much work is performed by the wind as the boat moves 100 ft? (Round the answer to two decimal places.)

    66. Vector \(\vecs p=⟨150,225,375⟩\) represents the price of certain models of bicycles sold by a bicycle shop. Vector \(\vecs n=⟨10,7,9⟩\) represents the number of bicycles sold of each model, respectively. Compute the dot product \(\vecs p ⋅ \vecs n\) and state its meaning.

    67. Two forces \(\vecs F_1\) and \(\vecs F_2\) are represented by vectors with initial points that are at the origin. The first force has a magnitude of 20 lb and the terminal point of the vector is point \(\displaystyle P(1,1,0)\). The second force has a magnitude of 40 lb and the terminal point of its vector is point \(\displaystyle Q(0,1,1)\). Let \(\vecs F\) be the resultant force of forces \(\vecs F_1\) and \(\vecs F_2\).

    a. Find the magnitude of \(\vecs F\). (Round the answer to one decimal place.)

    Answers to odd exercises: 
    61. \(\displaystyle 17N⋅m\)
    63. 1175 ft⋅lb
    65. \(25000\sqrt{3}\) ft-lbs \(\approx 43,301.27\) ft-lbs
         Vector representing the wind: \(\vecs w = 500\cos 60^{\circ} \mathbf{\hat i} + 500\sin 60^{\circ} \mathbf{\hat j}\)
         Vector representing the displacement to the north: \(\vecs d = 100 \mathbf{\hat j}\)
         Work done by the wind: \(W = \vecs w \cdot \vecs d = 25000\sqrt{3}\) ft-lbs \(\approx 43,301.27\) ft-lbs
    67. \(\displaystyle a. ∥F_1+F_2∥=52.9\) lb; 

    7.5e: The Dot Product is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?