Skip to main content
Mathematics LibreTexts

11.23: A.2.6- Section 2.6 Answers

  • Page ID
    121421
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    3. \(\mu (x)=1/x^{2};\quad y=cx\text{ and }\mu (y)=1/y^{2};\quad x=cy\)

    4. \(\mu (x)=x^{-3/2};\quad x^{3/2}y=c\)

    5. \(\mu (y)=1/y^{3};\quad y^{3}e^{2x}=c\)

    6. \(\mu (x)=e^{5x/2};\quad e^{5x/2}(xy+1)=c\)

    7. \(\mu (x)=e^{x};\quad e^{x}(xy+y+x)=c\)

    8. \(\mu (x)=x;\quad x^{2}y^{2}(9x+4y)=c\)

    9. \(\mu (y)=y^{2};\quad y^{3}(3x^{2}y+2x+1)=c\)

    10. \(\mu (y)=ye^{y};\quad e^{y}(xy^{3}+1)=c\)

    11. \(\mu (y)=y^{2};\quad y^{3}(3x^{4}+8x^{3}y+y)=c\)

    12.\(\mu (x)=xe^{x};\quad x^{2}y(x+1)e^{x}=c\)

    13. \(\mu (x)=(x^{3}-1)^{-4/3};\quad xy(x^{3}-1)^{-1/3}=c\text{ and }x ≡ 1\)

    14. \(\mu (y) = e^{y};\quad e^{y}(\sin x\cos y+y-1)=c\)

    15. \(\mu (y)=e^{-y^{2}};xye^{-y^{2}}(x+y)=c\)

    16. \(\frac{xy}{\sin y}=c\text{ and }y=k\pi (k=\text{integer})\)

    17. \(\mu (x,y)=x^{4}y^{3};\quad x^{5}y^{4}\ln x=c\)

    18. \(\mu (x,y)=1/xy;\quad |x|^{\alpha }|y|^{\beta }e^{\gamma x}e^{\delta y}=c\text{ and }x ≡ 0, y ≡ 0\)

    19. \(\mu (x,y)=x^{-2}y^{-3};\quad 3x^{2}y^{2}+y=1+cxy^{2}\text{ and }x ≡ 0, y ≡ 0\)

    20. \(\mu (x,y)=x^{-2}y^{-1};\quad -\frac{2}{x}+y^{3}+3\ln |y|=c\text{ and }x ≡ 0, y ≡ 0\)

    21. \(\mu (x,y) = e^{ax}e^{by};\quad e^{ac}e^{by}\cos xy=c\)

    22. \(\mu (x,y) = x^{-4}y^{-3}\text{ (and others) }xy=c\)

    23. \(\mu (x,y) = xe^{y};\quad x^{2}ye^{y}\sin x=c\)

    24. \(\mu (x,y) = 1/x^{2};\quad \frac{x^{3}y^{3}}{3}-\frac{y}{x}=c\)

    25. \(\mu (x)=x+1;\quad y(x+1)^{2}(x+y)=c\)

    26. \(\mu (x,y) = x^{2}y^{2};\quad x^{3}y^{3}(3x+2y^{2})=c\)

    27. \(\mu (x,y) = x^{-2}y^{-2};\quad 3x^{2}y=cxy +2\text{ and }x ≡ 0, y ≡ 0\)


    This page titled 11.23: A.2.6- Section 2.6 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?