Skip to main content
Mathematics LibreTexts

10.6.1: Constant Coefficient Homogeneous Systems III (Exercises)

  • Page ID
    30798
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\place}{\bigskip\hrule\bigskip\noindent} \newcommand{\threecol}[3]{\left[\begin{array}{r}#1\\#2\\#3\end{array}\right]} \newcommand{\threecolj}[3]{\left[\begin{array}{r}#1\\[1\jot]#2\\[1\jot]#3\end{array}\right]} \newcommand{\lims}[2]{\,\bigg|_{#1}^{#2}} \newcommand{\twocol}[2]{\left[\begin{array}{l}#1\\#2\end{array}\right]} \newcommand{\ctwocol}[2]{\left[\begin{array}{c}#1\\#2\end{array}\right]} \newcommand{\cthreecol}[3]{\left[\begin{array}{c}#1\\#2\\#3\end{array}\right]} \newcommand{\eqline}[1]{\centerline{\hfill$\displaystyle#1$\hfill}} \newcommand{\twochar}[4]{\left|\begin{array}{cc} #1-\lambda\\#3-\lambda\end{array}\right|} \newcommand{\twobytwo}[4]{\left[\begin{array}{rr} #1\\#3\end{array}\right]} \newcommand{\threechar}[9]{\left[\begin{array}{ccc} #1-\lambda\\#4-\lambda\\#7 -\lambda\end{array}\right]} \newcommand{\threebythree}[9]{\left[\begin{array}{rrr} #1\\#4\\#7 \end{array}\right]} \newcommand{\solutionpart}[1]{\vskip10pt\noindent\underbar{\color{blue}\sc Solution({\bf #1})\ }} \newcommand{\Cex}{\fbox{\textcolor{red}{C}}\, } \newcommand{\CGex}{\fbox{\textcolor{red}{C/G}}\, } \newcommand{\Lex}{\fbox{\textcolor{red}{L}}\, } \newcommand{\matfunc}[3]{\left[\begin{array}{cccc}#1_{11}(t)_{12}(t)&\cdots _{1#3}(t)\\#1_{21}(t)_{22}(t)&\cdots_{2#3}(t)\\\vdots& \vdots&\ddots&\vdots\\#1_{#21}(t)_{#22}(t)&\cdots_{#2#3}(t) \end{array}\right]} \newcommand{\col}[2]{\left[\begin{array}{c}#1_1\\#1_2\\\vdots\\#1_#2\end{array}\right]} \newcommand{\colfunc}[2]{\left[\begin{array}{c}#1_1(t)\\#1_2(t)\\\vdots\\#1_#2(t)\end{array}\right]} \newcommand{\cthreebythree}[9]{\left[\begin{array}{ccc} #1\\#4\\#7 \end{array}\right]} 1 \ newcommand {\ dy} {\ ,\ mathrm {d}y} \ newcommand {\ dx} {\ ,\ mathrm {d}x} \ newcommand {\ dyx} {\ ,\ frac {\ mathrm {d}y}{\ mathrm {d}x}} \ newcommand {\ ds} {\ ,\ mathrm {d}s} \ newcommand {\ dt }{\ ,\ mathrm {d}t} \ newcommand {\dst} {\ ,\ frac {\ mathrm {d}s}{\ mathrm {d}t}} \)

    Q10.6.1

    In Exercises 10.6.1-10.6.16 find the general solution.

    1. \({\bf y}'=\left[\begin{array}{cc}{-1}&{2}\\{-5}&{5}\end{array}\right]{\bf y}\)

    2. \({\bf y}'=\left[\begin{array}{cc}{-11}&{4}\\{-26}&{9}\end{array}\right]{\bf y}\)

    3. \({\bf y}'=\left[\begin{array}{cc}{1}&{2}\\{-4}&{5}\end{array}\right]{\bf y}\)

    4. \({\bf y}'=\left[\begin{array}{cc}{5}&{-6}\\{3}&{-1}\end{array}\right]{\bf y}\)

    5. \({\bf y}'=\left[\begin{array}{ccc}{3}&{-3}&{1}\\{0}&{2}&{2}\\{5}&{1}&{1}\end{array}\right]{\bf y}\)

    6. \({\bf y}'=\left[\begin{array}{ccc}{-3}&{3}&{1}\\{1}&{-5}&{-3}\\{-3}&{7}&{3}\end{array}\right]{\bf y}\)

    7. \({\bf y}'=\left[\begin{array}{ccc}{2}&{1}&{-1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]{\bf y}\)

    8. \({\bf y}'=\left[\begin{array}{ccc}{-3}&{1}&{-3}\\{4}&{-1}&{2}\\{4}&{-2}&{3}\end{array}\right]{\bf y}\)

    9. \({\bf y}'=\left[\begin{array}{cc}{5}&{-4}\\{10}&{1}\end{array}\right]{\bf y}\)

    10. \({\bf y}'=\frac{1}{3}\left[\begin{array}{cc}{7}&{-5}\\{2}&{5}\end{array}\right]{\bf y}\)

    11. \({\bf y}'=\left[\begin{array}{cc}{3}&{2}\\{-5}&{1}\end{array}\right]{\bf y}\)

    12. \({\bf y}'=\left[\begin{array}{cc}{34}&{52}\\{-20}&{-30}\end{array}\right]{\bf y}\)

    13. \({\bf y}'=\left[\begin{array}{ccc}{1}&{1}&{2}\\{1}&{0}&{-1}\\{-1}&{-2}&{-1}\end{array}\right]{\bf y}\)

    14. \({\bf y}'=\left[\begin{array}{ccc}{3}&{-4}&{-2}\\{-5}&{7}&{-8}\\{-10}&{13}&{-8}\end{array}\right]{\bf y}\)

    15. \({\bf y}'=\left[\begin{array}{ccc}{6}&{0}&{-3}\\{-3}&{3}&{3}\\{1}&{-2}&{6}\end{array}\right]{\bf y}\)

    16. \({\bf y}'=\left[\begin{array}{ccc}{1}&{2}&{-2}\\{0}&{2}&{-1}\\{1}&{0}&{0}\end{array}\right]{\bf y}\)

    Q10.6.2

    In Exercises 10.6.17-10.6.24 solve the initial value problem.

    17. \({\bf y}'=\left[\begin{array}{cc}{4}&{-6}\\{3}&{-2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{5}\\{2}\end{array}\right]\)

    18. \({\bf y}'=\left[\begin{array}{cc}{7}&{15}\\{-3}&{1}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{5}\\{1}\end{array}\right]\)

    19. \({\bf y}'=\left[\begin{array}{cc}{7}&{-15}\\{3}&{-5}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{17}\\{7}\end{array}\right]\)

    20. \({\bf y}'=\frac{1}{6}\left[\begin{array}{cc}{4}&{-2}\\{5}&{2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\)

    21. \({\bf y}'=\left[\begin{array}{ccc}{5}&{2}&{-1}\\{-3}&{2}&{2}\\{1}&{3}&{2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{4}\\{0}\\{6}\end{array}\right]\)

    22. \({\bf y}'=\left[\begin{array}{ccc}{4}&{4}&{0}\\{8}&{10}&{-20}\\{2}&{3}&{-2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{8}\\{6}\\{5}\end{array}\right]\)

    23. \({\bf y}'=\left[\begin{array}{ccc}{1}&{15}&{-15}\\{-6}&{18}&{-22}\\{-3}&{11}&{-15}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{15}\\{17}\\{10}\end{array}\right]\)

    24. \({\bf y}'=\left[\begin{array}{ccc}{4}&{-4}&{4}\\{-10}&{3}&{15}\\{2}&{-3}&{1}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{16}\\{14}\\{6}\end{array}\right]\)

    Q10.6.3

    25. Suppose an \(n\times n\) matrix \(A\) with real entries has a complex eigenvalue \(\lambda=\alpha+i\beta\) (\(\beta\ne0\)) with associated eigenvector \({\bf x}={\bf u}+i{\bf v}\), where \({\bf u}\) and \({\bf v}\) have real components. Show that \({\bf u}\) and \({\bf v}\) are both nonzero.

    26. Verify that

    \[\bf y_1=e^{\alpha t}({\bf u}\cos\beta t-{\bf v}\sin\beta t) \quad \text{and}\quad \bf y_2=e^{\alpha t}({\bf u}\sin\beta t+{\bf v}\cos\beta t),\nonumber\]

    are the real and imaginary parts of

    \[e^{\alpha t}(\cos\beta t+i\sin\beta t)({\bf u}+i{\bf v}).\nonumber\]

    27. Show that if the vectors \({\bf u}\) and \({\bf v}\) are not both \({\bf 0}\) and \(\beta\ne0\) then the vector functions

    \[\bf y_1=e^{\alpha t}({\bf u}\cos\beta t-{\bf v}\sin\beta t)\quad \mbox{ and }\quad \bf y_2=e^{\alpha t}({\bf u}\sin\beta t+{\bf v}\cos\beta t)\nonumber\]

    are linearly independent on every interval.

    28. Suppose \({\bf u}=\left[\begin{array}{c}{u_{1}}\\{u_{2}}\end{array}\right]\) and \({\bf v}=\left[\begin{array}{c}{v_{1}}\\{v_{2}}\end{array}\right]\) are not orthogonal; that is, \(({\bf u},{\bf v})\ne0\).

    1. Show that the quadratic equation \[({\bf u},{\bf v})k^2+(\|{\bf v}\|^2-\|{\bf u}\|^2)k-({\bf u},{\bf v})=0\nonumber\] has a positive root \(k_1\) and a negative root \(k_2=-1/k_1\).
    2. Let \({\bf u}_1^{(1)}={\bf u}-k_1{\bf v}\), \({\bf v}_1^{(1)}={\bf v}+k_1{\bf u}\), \({\bf u}_1^{(2)}={\bf u}-k_2{\bf v}\), and \({\bf v}_1^{(2)}={\bf v}+k_2{\bf u}\), so that \(({\bf u}_1^{(1)},{\bf v}_1^{(1)}) =({\bf u}_1^{(2)},{\bf v}_1^{(2)})=0\), from the discussion given above. Show that \[{\bf u}_1^{(2)}={{\bf v}_1^{(1)}\over k_1} \quad \text{and} \quad {\bf v}_1^{(2)}=-{{\bf u}_1^{(1)}\over k_1}.\nonumber\]
    3. Let \({\bf U}_1\), \({\bf V}_1\), \({\bf U}_2\), and \({\bf V}_2\) be unit vectors in the directions of \({\bf u}_1^{(1)}\), \({\bf v}_1^{(1)}\), \({\bf u}_1^{(2)}\), and \({\bf v}_1^{(2)}\), respectively. Conclude from (a) that \({\bf U}_2={\bf V}_1\) and \({\bf V}_2=-{\bf U}_1\), and that therefore the counterclockwise angles from \({\bf U}_1\) to \({\bf V}_1\) and from \({\bf U}_2\) to \({\bf V}_2\) are both \(\pi/2\) or both \(-\pi/2\).

    Q10.6.4

    In Exercises 10.6.29-10.6.32 find vectors \({\bf U}\) and \({\bf V}\) parallel to the axes of symmetry of the trajectories, and plot some typical trajectories.

    29. \({\bf y}'=\left[\begin{array}{cc}{3}&{-5}\\{5}&{-3}\end{array}\right]{\bf y}\)

    30. \({\bf y}'=\left[\begin{array}{cc}{-15}&{10}\\{-25}&{15}\end{array}\right]{\bf y}\)

    31. \({\bf y}'=\left[\begin{array}{cc}{-4}&{8}\\{-4}&{4}\end{array}\right]{\bf y}\)

    32. \({\bf y}'=\left[\begin{array}{cc}{-3}&{-15}\\{3}&{3}\end{array}\right]{\bf y}\)

    Q10.6.5

    In Exercises 10.6.33-10.6.40 find vectors \({\bf U}\) and \({\bf V}\) parallel to the axes of symmetry of the shadow trajectories, and plot a typical trajectory.

    33. \({\bf y}'=\left[\begin{array}{cc}{-5}&{6}\\{-12}&{7}\end{array}\right]{\bf y}\)

    34. \({\bf y}'=\left[\begin{array}{cc}{5}&{-12}\\{6}&{-7}\end{array}\right]{\bf y}\)

    35. \({\bf y}'=\left[\begin{array}{cc}{4}&{-5}\\{9}&{-2}\end{array}\right]{\bf y}\)

    36. \({\bf y}'=\left[\begin{array}{cc}{-4}&{9}\\{-5}&{2}\end{array}\right]{\bf y}\)

    37. \({\bf y}'=\left[\begin{array}{cc}{-1}&{10}\\{-10}&{-1}\end{array}\right]{\bf y}\)

    38. \({\bf y}'=\left[\begin{array}{cc}{-1}&{-5}\\{20}&{-1}\end{array}\right]{\bf y}\)

    39. \({\bf y}'=\left[\begin{array}{cc}{-7}&{10}\\{-10}&{9}\end{array}\right]{\bf y}\)

    40. \({\bf y}'=\left[\begin{array}{cc}{-7}&{6}\\{-12}&{5}\end{array}\right]{\bf y}\)


    This page titled 10.6.1: Constant Coefficient Homogeneous Systems III (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.