4.2: Normal Supgroups and Factor Groups
- Page ID
- 132494
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Normal subgroups
Let \( G \) be a group, and let \( H \leq G \). Then \(H\) is called a normal subgroup of \( G \) if \( gH=Hg, \forall g \in G ,\) denoted as \(H \unlhd G.\)
That is, normal subgroups are those that are invariant under conjugation by any element of the group.
Suppose \(H \le G \).
\(H \) is a normal subgroup of \(G \), if \(gH=Hg, \;\forall g \in G \). Means left cosets=right cosets.
For any group \(G \), the trivial subgroups \(\{e\} \) and \(G \) are normal subgroups.
Consider \(S_3=\{e,(123),(321),(12),(13),(23)\}\).
-
Is \(H=\{e, (12)\}\unlhd S_3\)?
Since \((123)H=\{(123),(13)\} \ne H(123)=\{(123),(23\}\), thus \(H \not \unlhd S_3\).
-
Is \(A_3=\{\langle (123) \rangle\} \unlhd S_3\)?
\(A_3=\{e,(123),(321)\}\).
There will be 2 cosets of \(A_3\) in \(S_3\) since \(\frac{|S_3|}{|A_3|}=\frac{6}{3}=2\).
The first will be the set itself since \(eH=He=H\). To find the second, take any element
in \(S_3\), not in \(S_4\) and determine its coset. Having done so, the cosets are: \(A_3, \{(12),(13),(23)\}\).
Let \(G\) be a group, and \(H\) be a subgroup of \(G\). If \([G:H]=2\), then show that \(H\) is a normal subgroup of \(G\).
- Proof:
-
Let \(G\) be a group and \(H \le G\) s.t. \([G:H] =2\).
\(H\) partitions \(G\) into 2 cosets. The left cosets being \(\{ H, xH\}\). Similarly, the right cosets are \(\{H, Hx\}\) where \(x \in G\) and \( x \not \in H\).
Case 1:
If \(x \in H\) then \(xH=H=Hx\).
Since \(xH=Hx\), \(H \unlhd G\).
Case 2:
If \(x \in G\), but not in \(H\). We will show this as \(x \in G-H\).
Then \(xH = G-H =Hx\).
Since \(xH=Hx\), \(H \unlhd G\).
Thus \(xH=Hx, \; \forall x \in G\), thus \(H \unlhd G\).◻
Show that \(A_n\) is a normal subgroup of \(S_n, \; \forall \; n \in \mathbb{N}\).
Solution
Consider \(\frac{|S_n|}{|A_n|}=\frac{n!}{\frac{n!}{2}}=2\).
From previous theorem, given \(H \le G\) then if \([G:H]=2\) then \(H \unlhd G\).
Since \(A_n \le S_n\) and \([S_n:A_n]=2\), \(H \unlhd G\).◻
List all normal subgroups in \(D_4.\)
Solution
\(D_4= \langle r,s \mid r^4=e, s^2=e, srs=r^{-1} \rangle =\{e, r, r^2, r^3, s, sr^2, sr^3\}\). Note that \(\{1\}\) and \(D_4\) are normal subgroups of \(D_4\).
Since \(|D_4|=8\), by Lagranges thereom, nontrivial subgroups of \(D_4\) has order \(2\) or \(4\).
The subgroups of order \(4\) are:
\(H_1=\langle r\rangle=\{e, r, r^2, r^3\}, H_2=\langle s,r^2\rangle =\{e, s, r^2, sr^2\}, H_3=\langle sr, r^2\rangle =\{e, sr, r^2, sr^3\}.\)
Since \([D_4: H_i]=\dfrac{8}{4}=2, \forall i=1,2,3 \), \(H_i \unlhd D_4 ,\, \forall i=1,2,3\).
We know that \(Z(D_4)=\{e,r^2\}\), \(\{e,r^2\} \unlhd D_4\). (see below Theorem 3)
Verify that the subgroup of order \(2, \langle s\rangle \not \unlhd D_4\).
Note: Let \(G \) be a group.
If \(H \le G \) and \(K \le H \) then \(K \le G \). However, this does not work for normal subgroups. Thus, given \(H\unlhd G \) and \(K \unlhd H \), it does not follow that \(K \unlhd G \); see the following example.
Let \( G= A_4 \) , \( H= \{e, (1,2)(3,4),(1,3)(2,4), (2,3)(1,4) \} and \(K=\{\{e, (1,2)(3,4)\}. \)
Then \( H \unlhd G \) and \( K \unlhd H, \) but \(K \) is not a normal subgroup of \(A_4. \) That is \( K \not\trianglelefteq G. \)
- Answer
-
Let \(G = A_4, H= K_4 = \{e,(12)(34), (13)(24), (14)(23)\}\) and \(K=\{e, (12)(34)\}.\) Consider the Cayley table for \(H\) and \(K\),
Then clearly, \(H\leq G \text{, } K\leq G.\) We shall show that \(H \trianglelefteq G\) and \(K \trianglelefteq H\).
By Lagranges Theorem. \([H:K] = \frac{|H|}{|K|} = 2, gK = Kg, \forall\ g\in H\). Thus, \(K \trianglelefteq H\). Now, by Lagranges Theorem. \([G:H] = \frac{|G|}{|H|} = \dfrac{12}{4}=3\), Hence \(H\) has \(3\) cosets in \(G\).
Now, consider the left cosets of \( H\) in \(G\):\[ eH = \{ ee, e(12)(34), e(13)(24), e(14)(23) \} = \{ e, (12)(34), (13)(24), (14)(23) \} \] \[ = ((1, 2)(3, 4))H = ((1, 3)(2, 4))H = ((1, 4)(2, 3))H \] \[ (1, 2, 3)H = \{ (1, 2, 3)e, (1, 2, 3)(12)(34), (1, 2, 3)(13)(24), (1, 2, 3)(14)(23) \} \] \[ = \{ (1, 2, 3), (1, 3, 4), (2, 4, 3), (4, 2, 1) \} = (1, 3, 4)H = (2, 4, 3)H = (4, 2, 1)H \] \[ (3, 2, 1)H= \{ (3, 2, 1)e, (3, 2, 1)(12)(34), (3, 2, 1)(13)(24), (3, 2, 1)(14)(23) \} \] \[ = \{ (3, 2, 1), (2, 3, 4), (1, 2, 4), (1, 4, 3) \} = (2, 3, 4)H = (1, 2, 4)H = (1, 4, 3)H. \] And the right cosets of \( H \) are: \[ He = \{ ee, (12)(34)e, (13)(24)e, (14)(23)e \} = \{ e, (12)(34), (13)(24), (14)(23) \} = H((1, 2)(3, 4)) = H((1, 3)(2, 4)) = H((1, 4)(2, 3)) \] \[ H(1, 2, 3) = \{ e(1, 2, 3), (12)(34)(1, 2, 3), (13)(24)(1, 2, 3), (14)(23)(1, 2, 3) \} = \{ (1, 2, 3), (2, 4, 3), (1, 4, 2), (1, 3, 4) \} = H(1, 3, 4)= H(2, 4, 3)= H(1, 4, 2) \] \[ H(3, 2, 1) = \{ e(3, 2, 1), (12)(34)(3, 2, 1), (13)(24)(3, 2, 1), (14)(23)(3, 2, 1) \} = \{ (3, 2, 1), (1, 4, 3), (2, 3, 4), (1, 2, 4) \} = H(2, 3, 4) = H(1, 2, 4) = H(1, 4, 3) \] Since the right cosets are the same as the left cosets, we know that \( K \) is normal in \( H \).
Since the right cosets are the same as the left cosets, we know that \( H \) is normal in \( G \).
We shall show that \(K\) is not a normal subgroup of \(A_4.\) Since \((1, 2, 3)(12)(34)(3,2,1)=(1,3)(2,4)\notin K\), \(K\) is not a normal subgroup of \(A_4.\)
Let \(G \) be a group and \(H \le G \). Then the following statements are equivalent:
-
\(H \unlhd G \).
-
\(\forall \; g\in G, \; gHg^{-1} \subseteq H \).
-
\(\forall \; g \in G, \; gHg^{-1} = H \).
Let \(G \) be a group and \(H \le G \). Then
1. if \(G\) is abelian, then \(H \unlhd G \).
2. \(Z(G) \unlhd G \).
Prove or disprove the statements:
1. If all the subgroups of a group \(G\) are normal subgroups of \(G\) then \(G\) is abelian.
2. If \(H \unlhd G \) then \(H=Z(G).\)
3. If \(H \unlhd G \) then \([G:H]=2.\)
4. If \(H \le G \) and \(H\) is abelian then \(H \unlhd G \).
Solution
1. Counterexample: \(G=Q_8=\{ \pm 1, \pm i, \pm j, \pm k \mid i^2=j^2=k^2, ij=k, jk=i, ki=j\}\)
2. Counterexample: \(G=S_3\). Then \(Z(S_3)=\{e\}\) and \(A_3 \unlhd G \). Normal subgroups are not necessarily the center of the group.
3. Counterexample: \(G=A_4\) and \( H= \{e, (1,2)(3,4),(1,3)(2,4), (2,3)(1,4) \} . \)
4. Counterexample: \(G=A_4\) and \(K=\{e, (12)(34)\}.\)
Simple Subgroups
A group \(G\) is called simple if \(G\) has no nontrivial normal subgroups.
\(\mathbb{Z}_2\) is simple since the normal subgroups are \(\{0\}, \mathbb{Z}_2\). \(\mathbb{Z}_p\), for prime \(p\) and \(A_n\) for \(n\geq 5\) are simple.
Factor Groups
Let \(G \) be a group and \(N \unlhd G \).
Thus \( \{gN|g \in G\} \) are all the cosets (i.e., the set of sets), and the factor group is defined as \(G/N= \{gN|g \in G\} \), which is a group with the operation of \((g_1N)(g_2N)=g_1g_2N \) for \(g_1g_2 \in G \). If \(G \) is finite, the order \(|G/N|=[G:N] \).
We shall show that \(G/N\) is a group \(gN \, hN=(g \star h)N\) with \(\star\) being the operation in \(G\) .
Note: This is the process used to combine groups.
First, we shall show that \(N=\) is the identity of \(G/N\).
Consider \(gN\, N=(g\star e)N=N\, gN\) . Thus, the identity \(N\) exists.
Suppose \(g \in G\). Then \(gN\star g^{-1}N=(gg^{-1})N=eN=N\) . Thus, the inverse exists \(g^{-1}N\) for each element \(gN\).
\(G /N\) is associative since \(G\) was associative.
Since \(G/N\) has an identity, has an inverse for each element, and is associative, \(G/N\) is a group, which is called a factor group (or quotient group).
\(S_3/A_3=\{A_3, (12)A_3\} \).
The Cayley Table for \(S_3/A_3\):
\(A_3\) | \((12)A_3\) | |
\(A_3\) | \(A_3\) | \((12)A_3\) |
\((12)A_3\) | \((12)A_3\) | \(A_3\) |
Let \((\mathbb{Z}, +) \). Consider \(n\mathbb{Z}=\{\ldots, -2n,-n, 0, n, 2n, \ldots\} \). Is this a group?
Yes, since it is a non-empty set that contains the identity and \(gh^{-1}\in n\mathbb{Z}, \forall g,h \in n\mathbb{Z}\).
Therefore, the set is a subgroup of \(\mathbb{Z}\). Since \(\mathbb{Z}\) is abelian, it is a normal subgroup of \(\mathbb{Z}\). Hence,
\(\mathbb{Z} / n \mathbb{Z}=\{ 0+n\mathbb{Z}, 1+ n \mathbb{Z}, \ldots (n-1)+ n \mathbb{Z}\} \).
Let \(G=<a>\) where \(|a|=12,\) and let \(H=<a^3>.\) Find all cosets in \(G/H\) and write down the Cayley table. Is \(G/H\) cyclic? Why or why not?
Solution
By Theorem 2.4.8, \(H \le G.\) Since \(G\) is abelian, \(H \unlhd G\). The factor group \(G/H=\{H, aH, a^2H\}.\)
Cayley table for \(G/H\) | |||
\(H\) | \(aH\) | \(a^2H\) | |
\(H\) | \(H\) | \(aH\) | \(a^2H\) |
\(aH\) | \(aH\) | \(a^2H\) | \(H\) |
\(a^2H\) | \(a^2H\) | \(H\) | \(aH\) |
Notice that \(G/H=\{H, aH, a^2H\}=\{\langle aH \rangle \mid a^3H=H \}.\) Thus \(G/H\) is cyclic.
1. A factor group of a cyclic group is cyclic.
2. A factor group of an abelian group is abelian.
3. A factor group of a finite group is finite.
A factor group of a non-abelian group can be abelian or cyclic. ( see example
A factor group of an infinite group can be finite.
Let \(G\) be a group and let \(K\) be a subgroup of \(Z(G)\) be the centre of \(G\). If \(G/K\) is cyclic, then \(G\) is abelian.
Let \(G\) be a non-abelian group of order \(pq\), where \(p\) and \(q\) are different prime numbers. Then the center of \(G\), \(Z(G)=\{e\}.\)
- Proof
-
Let \(G\) be a non-abelian group of order \(pq\), where \(p\) and \(q\) are prime.
By Lagranges thereom, the subgroups of \(G\) has order \(1\) , \(p\), \(q\) or \(pq\).
Since \(G\) is non-abelian, \(Z(G) \ne G\).
Assume that \(|Z(G)|\) is \(p\) or \(q\), then \(G/Z(G)\) is of prime order. Therefore, it is cyclic. Hence by
\(G\) is abelian.This contradicts the fact that \(G\) is non-abelian. Hence \(|Z(G)|=1\). Thus \(Z(G)=\{e\}.\)
Let \(G\) be a group and let \(G^{'} = \langle aba^{-1}b^{-1} \rangle\), that is, \(G^{'}\) is the subgroup of all infinite products of elements in \(G\) of the form \(aba^{-1}b^{-1}\). The subgroup \(G^{'}\) is called the commutator subgroup of \(G\).
-
Show that \(G^{'}\) is a normal subgroup of \(G\).
Proof:
Let \(g \in G\) and \(h \in G^{'}\).
We will show that \(G^{'} \unlhd G\).
Consider \(h=aba^{-1}b^{-1}, a,b \in G\).
Then \(ghg^{-1}=gaba^{-1}b^{-1}g^{-1}\)
\(=geaebea^{-1}eb^{-1}g^{-1}\)
\(=(gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1})\) Note: \(g^{-1}g=e\)
\(=(gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1} \in G'\).
Thus \(G^{'} \unlhd G\).◻
2. Let \(N\) be a normal subgroup of \(G\). Prove that \(G/N\) is abelian iff \(N\) contains the commutator subgroup of \(G\).
Proof:
Let \(N \unlhd G\).
We shall show that \(G/N\) is abelian if and only if \(N\) contains the commutator subgroup of \(G\).
Let \(G/N\) be abelian.
Let \(a,b \in G\).
We shall show that the commutator subgroup of \(G \subseteq N\)
Consider \((aN)(bN)=(bN)(aN)\) since \(G/N\) is abelian.
Thus, \(abN=baN\).
Thus \(ab(ba)^{-1} \in N\) Note: due to cosets.
Thus \(ab(ba)^{-1}=aba^{-1}b^{-1} \in N\).
Therefore the commutator subgroup of \(G \subseteq N\).
Conversely, let the commutator subgroup of \(G \subseteq N\) and \(a,b \in G\).
We shall show that \(G/N\) is abelian.
Since the commutator subgroup of \(G \subseteq N\), \(aba^{-1}b^{-1} \in N\).
Thus, \(ab(ba)^{-1}N=N\).
Thus \((aN)(bN)=(bN)(aN)\).
Therefore \( G/N\) is abelian.
Therefore \(G/N\) is abelian iff \(N\) contains the commutator subgroup of \(G\).◻