Skip to main content
Mathematics LibreTexts

4.2: Normal Supgroups and Factor Groups

  • Page ID
    132494
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Normal subgroups 

    Definition: Normal subgroup

    Let \( G \) be a group, and let \( H \leq G \). Then \(H\) is called a normal subgroup of \( G \) if \(  gH=Hg, \forall g \in G ,\) denoted  as \(H \unlhd G.\)

    That is, normal subgroups are those that are invariant under conjugation by any element of the group.Screen Shot 2023-07-06 at 4.04.44 PM.png

    Suppose \(H \le G \).

    \(H \) is a normal subgroup of \(G \), if \(gH=Hg, \;\forall g \in G \).  Means left cosets=right cosets. 

    For any group \(G \), the trivial subgroups \(\{e\} \) and \(G \) are normal subgroups.

    Example \(\PageIndex{1}\)

    Consider \(S_3=\{e,(123),(321),(12),(13),(23)\}\).

    1. Is \(H=\{e, (12)\}\unlhd S_3\)?

    Since \((123)H=\{(123),(13)\} \ne H(123)=\{(123),(23\}\), thus \(H \not \unlhd S_3\).

    1. Is \(A_3=\{\langle (123) \rangle\} \unlhd S_3\)?

    \(A_3=\{e,(123),(321)\}\).

    There will be 2 cosets of \(A_3\) in \(S_3\) since \(\frac{|S_3|}{|A_3|}=\frac{6}{3}=2\).  

    The first will be the set itself since \(eH=He=H\).  To find the second, take any element 

    in \(S_3\), not in \(S_4\) and determine its coset.  Having done so, the cosets are: \(A_3, \{(12),(13),(23)\}\). 

    Theorem \(\PageIndex{1}\)

    Let \(G\) be a group, and \(H\) be a subgroup of \(G\).  If \([G:H]=2\), then show that \(H\) is a normal subgroup of \(G\).

    Proof:

    Let \(G\) be a group and \(H \le G\) s.t. \([G:H] =2\).

    \(H\) partitions \(G\) into 2 cosets.  The left cosets being \(\{ H, xH\}\).  Similarly, the right cosets are \(\{H, Hx\}\) where \(x \in G\) and \( x \not \in H\).

    Case 1:

    If \(x \in H\) then \(xH=H=Hx\).

    Since \(xH=Hx\), \(H \unlhd G\).

    Case 2:

    If \(x \in G\), but not in \(H\).  We will show this as \(x \in G-H\).

    Then \(xH = G-H =Hx\).

    Since \(xH=Hx\), \(H \unlhd G\).

    Thus \(xH=Hx, \; \forall x \in G\), thus \(H \unlhd G\).◻

     

    Example \(\PageIndex{2}\)

    Show that \(A_n\) is a normal subgroup of \(S_n, \; \forall \; n \in \mathbb{N}\).

    Solution

    Consider \(\frac{|S_n|}{|A_n|}=\frac{n!}{\frac{n!}{2}}=2\).

    From previous theorem, given \(H \le G\) then if \([G:H]=2\) then \(H \unlhd G\).

    Since \(A_n \le S_n\) and \([S_n:A_n]=2\), \(H \unlhd G\).◻

    Example \(\PageIndex{3}\)

    List all normal subgroups in \(D_4.\)

    Solution

    \(D_4= \langle r,s \mid r^4=e, s^2=e, srs=r^{-1} \rangle =\{e, r, r^2, r^3, s, sr^2, sr^3\}\). Note that \(\{1\}\) and \(D_4\) are normal subgroups of \(D_4\).  

    Since \(|D_4|=8\), by Lagranges thereom, nontrivial subgroups of  \(D_4\)  has order \(2\) or \(4\).

    The subgroups of order \(4\) are:

    \(H_1=\langle r\rangle=\{e, r, r^2, r^3\}, H_2=\langle s,r^2\rangle =\{e, s, r^2, sr^2\}, H_3=\langle sr, r^2\rangle =\{e, sr, r^2, sr^3\}.\)

    Since \([D_4: H_i]=\dfrac{8}{4}=2, \forall i=1,2,3 \), \(H_i \unlhd D_4 ,\, \forall i=1,2,3\).

    We know that \(Z(D_4)=\{e,r^2\}\), \(\{e,r^2\} \unlhd D_4\). (see below Theorem 3)

    Verify that the subgroup of order \(2, \langle s\rangle \not \unlhd D_4\).

    Screen Shot 2023-07-06 at 4.06.14 PM.pngNote:  Let \(G \) be a group.

    If \(H \le G \) and \(K \le H \) then \(K \le G \).  However, this does not work for normal subgroups.  Thus, given \(H\unlhd G \) and \(K \unlhd H \), it does not follow that \(K \unlhd G \); see the following example. 

    Example \(\PageIndex{4}\)

    Let \( G= A_4 \) , \( H= \{e, (1,2)(3,4),(1,3)(2,4), (2,3)(1,4) \}  and \(K=\{\{e, (1,2)(3,4)\}. \)

    Then \( H \unlhd G \) and \( K \unlhd H, \) but \(K \) is not a normal subgroup of \(A_4. \) That is \( K \not\trianglelefteq G. \)

    Answer

    Let \(G = A_4, H= K_4 = \{e,(12)(34), (13)(24), (14)(23)\}\) and \(K=\{e, (12)(34)\}.\) Consider the Cayley table for \(H\) and \(K\),

    clipboard_ef2d125473a59fc41fe6839bf65f4b2be.png clipboard_edc6bec9894d8718d4151c059a3fef0b5.png

    Then clearly, \(H\leq G \text{, } K\leq G.\) We shall show that \(H \trianglelefteq G\) and \(K \trianglelefteq H\).

    By Lagranges Theorem. \([H:K] = \frac{|H|}{|K|} = 2, gK = Kg, \forall\ g\in H\). Thus, \(K \trianglelefteq H\).    Now, by Lagranges Theorem. \([G:H] = \frac{|G|}{|H|} = \dfrac{12}{4}=3\), Hence \(H\) has \(3\) cosets in \(G\).

     Now, consider the left cosets of \( H\) in \(G\):\[ eH = \{ ee, e(12)(34), e(13)(24), e(14)(23) \}  = \{ e, (12)(34), (13)(24), (14)(23) \} \] \[ = ((1, 2)(3, 4))H = ((1, 3)(2, 4))H  = ((1, 4)(2, 3))H \] \[ (1, 2, 3)H = \{ (1, 2, 3)e, (1, 2, 3)(12)(34), (1, 2, 3)(13)(24), (1, 2, 3)(14)(23) \} \] \[ = \{ (1, 2, 3), (1, 3, 4), (2, 4, 3), (4, 2, 1) \} = (1, 3, 4)H  = (2, 4, 3)H  = (4, 2, 1)H \] \[ (3, 2, 1)H= \{ (3, 2, 1)e, (3, 2, 1)(12)(34), (3, 2, 1)(13)(24), (3, 2, 1)(14)(23) \} \] \[ = \{ (3, 2, 1), (2, 3, 4), (1, 2, 4), (1, 4, 3) \} = (2, 3, 4)H = (1, 2, 4)H = (1, 4, 3)H. \] And the right cosets of \( H \) are: \[ He = \{ ee, (12)(34)e, (13)(24)e, (14)(23)e \}  = \{ e, (12)(34), (13)(24), (14)(23) \}  = H((1, 2)(3, 4))  = H((1, 3)(2, 4)) = H((1, 4)(2, 3)) \] \[ H(1, 2, 3) = \{ e(1, 2, 3), (12)(34)(1, 2, 3), (13)(24)(1, 2, 3), (14)(23)(1, 2, 3) \}  = \{ (1, 2, 3), (2, 4, 3), (1, 4, 2), (1, 3, 4) \} = H(1, 3, 4)= H(2, 4, 3)= H(1, 4, 2) \] \[ H(3, 2, 1) = \{ e(3, 2, 1), (12)(34)(3, 2, 1), (13)(24)(3, 2, 1), (14)(23)(3, 2, 1) \}  = \{ (3, 2, 1), (1, 4, 3), (2, 3, 4), (1, 2, 4) \} = H(2, 3, 4)  = H(1, 2, 4)  = H(1, 4, 3) \] Since the right cosets are the same as the left cosets, we know that \( K \) is normal in \( H \).

    Since the right cosets are the same as the left cosets, we know that \( H \) is normal in \( G \).

    We shall show that \(K\) is not a normal subgroup of \(A_4.\) Since \((1, 2, 3)(12)(34)(3,2,1)=(1,3)(2,4)\notin K\), \(K\) is not a normal subgroup of \(A_4.\)

    Theorem \(\PageIndex{2}\)

    Let \(G \) be a group and \(H \le G \).  Then the following statements are equivalent:

    1. \(H \unlhd G \).

    2. \(\forall \; g\in G, \; gHg^{-1} \subseteq H \).

    3. \(\forall \; g \in G, \; gHg^{-1} = H \).

    Theorem \(\PageIndex{3}\)

    Let \(G \) be a group and \(H \le G \). Then

    1. if \(G\) is abelian, then \(H \unlhd G \).

    2. \(Z(G)  \unlhd G \).

     

    Example \(\PageIndex{5}\)

    Prove or disprove the statements:

    1. If all the subgroups of a group \(G\) are normal subgroups of \(G\) then \(G\) is abelian.

    2. If \(H \unlhd G \) then \(H=Z(G).\)

    3. If  \(H \unlhd G \) then \([G:H]=2.\)

    4. If  \(H \le G \) and \(H\) is abelian then  \(H \unlhd G \).

    Solution

    1. Counterexample: \(G=Q_8=\{ \pm 1, \pm i, \pm j, \pm k \mid i^2=j^2=k^2, ij=k, jk=i, ki=j\}\)

    2. Counterexample: \(G=S_3\). Then \(Z(S_3)=\{e\}\) and \(A_3 \unlhd G \).  Normal subgroups are not necessarily the center of the group.

    3.  Counterexample: \(G=A_4\) and \( H= \{e, (1,2)(3,4),(1,3)(2,4), (2,3)(1,4) \} . \)

    4. Counterexample: \(G=A_4\) and \(K=\{e, (12)(34)\}.\)

    Simple Subgroups

    Definition: Simple

    A group \(G\) is called simple if \(G\) has no nontrivial normal subgroups.

    Example \(\PageIndex{5}\)

    \(\mathbb{Z}_2\)  is simple since the normal subgroups are  \(\{0\}, \mathbb{Z}_2\).  \(\mathbb{Z}_p\), for prime \(p\) and \(A_n\) for \(n\geq 5\) are simple.

    Factor Groups

    Definition: Factor Groups

    Let \(G \) be a group and \(N \unlhd G \).

    Thus \( \{gN|g \in G\} \) are all the cosets (i.e., the set of sets), and the factor group is defined as \(G/N= \{gN|g \in G\} \), which is a group with the operation of \((g_1N)(g_2N)=g_1g_2N \) for \(g_1g_2 \in G \).  If \(G \) is finite, the order \(|G/N|=[G:N] \).

     We shall show  that \(G/N\) is a group \(gN \, hN=(g \star h)N\) with \(\star\) being the operation in \(G\) .

    Note: This is the process used to combine groups.

    First, we shall show that \(N=\) is the identity of \(G/N\).

    Consider \(gN\, N=(g\star e)N=N\, gN\) .  Thus, the identity  \(N\) exists.

     Suppose \(g \in G\). Then  \(gN\star g^{-1}N=(gg^{-1})N=eN=N\) .  Thus, the inverse exists  \(g^{-1}N\) for each element \(gN\).

    \(G /N\) is associative since \(G\) was associative.

    Since \(G/N\) has an identity, has an inverse for each element, and is associative, \(G/N\) is a group, which is called a factor group (or quotient group)

     

    Example \(\PageIndex{6}\)

    \(S_3/A_3=\{A_3, (12)A_3\} \).

    The Cayley Table for \(S_3/A_3\):

      \(A_3\) \((12)A_3\)
    \(A_3\) \(A_3\) \((12)A_3\)
    \((12)A_3\) \((12)A_3\) \(A_3\)

     

    Example \(\PageIndex{7}\)

    Let \((\mathbb{Z}, +) \). Consider \(n\mathbb{Z}=\{\ldots, -2n,-n, 0, n, 2n, \ldots\} \). Is this a group? 

    Yes, since it is a non-empty set that contains the identity and \(gh^{-1}\in n\mathbb{Z}, \forall g,h \in n\mathbb{Z}\).

    Therefore, the set is a subgroup of  \(\mathbb{Z}\). Since \(\mathbb{Z}\) is abelian, it is a normal subgroup of  \(\mathbb{Z}\). Hence,

    \(\mathbb{Z} / n \mathbb{Z}=\{ 0+n\mathbb{Z}, 1+ n \mathbb{Z}, \ldots  (n-1)+ n \mathbb{Z}\} \).

    Example \(\PageIndex{8}\)

    Let \(G=<a>\) where   \(|a|=12,\) and let \(H=<a^3>.\) Find all cosets in \(G/H\) and  write down the Cayley table. Is \(G/H\) cyclic? Why or why not?

    Solution

    By Theorem 2.4.8, \(H \le G.\) Since \(G\) is abelian, \(H \unlhd G\). The factor group \(G/H=\{H, aH, a^2H\}.\) 

    Cayley table for \(G/H\)
      \(H\) \(aH\) \(a^2H\)
    \(H\) \(H\) \(aH\) \(a^2H\)
    \(aH\) \(aH\) \(a^2H\) \(H\)
    \(a^2H\) \(a^2H\) \(H\) \(aH\)

    Notice that \(G/H=\{H, aH, a^2H\}=\{\langle  aH \rangle \mid a^3H=H \}.\)  Thus \(G/H\)  is cyclic.

     

    Theorem \(\PageIndex{4}\)

    1. A factor group of a cyclic group is cyclic.

    2. A factor group of an abelian group is abelian.

    3. A factor group of a finite group is finite.

     

    Note

    A factor group of a non-abelian group can be abelian or cyclic. ( see example \(\PageIndex{6}\))

    A factor group of an infinite group can be finite.

    Theorem \(\PageIndex{5}\)

    Let \(G\) be a group and let \(K\) be a subgroup of \(Z(G)\) be the centre of \(G\).  If \(G/K\) is cyclic, then \(G\) is abelian.

    Corollary\(\PageIndex{1}\)

     

     Let \(G\) be a non-abelian group of order \(pq\), where \(p\) and \(q\) are different prime numbers. Then the center of \(G\),  \(Z(G)=\{e\}.\)

    Proof

    Let \(G\) be a non-abelian group of order \(pq\), where \(p\) and \(q\) are prime. 

    By Lagranges thereom, the subgroups of  \(G\)  has order \(1\) , \(p\), \(q\) or \(pq\).

     Since \(G\) is non-abelian, \(Z(G) \ne G\).

    Assume that \(|Z(G)|\) is \(p\) or \(q\), then \(G/Z(G)\) is of prime order. Therefore, it is cyclic. Hence by Theorem \(\PageIndex{3}\), \(G\) is abelian.

    This contradicts the fact that \(G\) is non-abelian. Hence \(|Z(G)|=1\). Thus \(Z(G)=\{e\}.\)

     

    Example \(\PageIndex{9}\)

    Let \(G\) be a group and let \(G^{'} = \langle aba^{-1}b^{-1} \rangle\), that is, \(G^{'}\) is the subgroup of all infinite products of elements in \(G\) of the form \(aba^{-1}b^{-1}\).  The subgroup \(G^{'}\) is called the commutator subgroup of \(G\).

    1. Show that \(G^{'}\) is a normal subgroup of \(G\).

    Proof:

    Let \(g \in G\) and \(h \in G^{'}\).

    We will show that \(G^{'} \unlhd G\).

    Consider \(h=aba^{-1}b^{-1}, a,b \in G\).

    Then \(ghg^{-1}=gaba^{-1}b^{-1}g^{-1}\)

             \(=geaebea^{-1}eb^{-1}g^{-1}\)

             \(=(gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1})\) Note: \(g^{-1}g=e\)

             \(=(gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1} \in G'\).

    Thus \(G^{'} \unlhd G\).◻

    2. Let \(N\) be a normal subgroup of \(G\).  Prove that \(G/N\) is abelian iff \(N\) contains the commutator subgroup of \(G\).

    Proof:

    Let \(N \unlhd G\). 

    We shall show that \(G/N\) is abelian if and only if \(N\) contains the commutator subgroup of \(G\).

    Let \(G/N\) be abelian.

    Let \(a,b \in G\).

    We shall show that the commutator subgroup of \(G \subseteq N\)

    Consider \((aN)(bN)=(bN)(aN)\) since \(G/N\) is abelian.

    Thus, \(abN=baN\).

    Thus \(ab(ba)^{-1} \in N\) Note: due to cosets.

    Thus \(ab(ba)^{-1}=aba^{-1}b^{-1} \in N\).

    Therefore the commutator subgroup of \(G \subseteq N\).

     

    Conversely, let the commutator subgroup of \(G \subseteq N\) and \(a,b \in G\).

    We shall show that \(G/N\) is abelian.

    Since the commutator subgroup of \(G \subseteq N\), \(aba^{-1}b^{-1} \in N\).

    Thus, \(ab(ba)^{-1}N=N\).

    Thus \((aN)(bN)=(bN)(aN)\).

    Therefore \( G/N\) is abelian.

     

    Therefore \(G/N\) is abelian iff \(N\) contains the commutator subgroup of \(G\).◻


    This page titled 4.2: Normal Supgroups and Factor Groups is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?