Skip to main content
Mathematics LibreTexts

1.0E: Exercises

  • Page ID
    10622
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For the following exercises, (a) determine the domain and the range of each relation, and (b) state whether the relation is a function.

    Exercise \(\PageIndex{1}\)

    \(x\) \(y\) \(x\) \(y\)
    -3 9 1 1
    -2 4 2 4
    -1 1 3 9
    0 0
    Answer

    a. Domain = {\(−3,−2,−1,0,1,2,3\)}, range = {\(0,1,4,9\)}

    b. Yes, a function

    Exercise \(\PageIndex{2}\)

    \(x\) \(y\) \(x\) \(y\)
    1 -3 1 1
    2 -2 2 2
    3 -1 3 3
    0 0
    Answer

    a. Domain = {\(0,1,2,3\)}, range = {\(−3,−2,−1,0,1,2,3\)}

    b. No, not a function

    Exercise \(\PageIndex{3}\)

    \(x\) \(y\) \(x\) \(y\)
    3 3 15 1
    5 2 21 2
    8 1 33 3
    10 0
    Answer

    a. Domain = {\(3,5,8,10,15,21,33\)}, range = {\(0,1,2,3\)}

    b. Yes, a function

    For the following exercises, find the values for each function, if they exist, then simplify.

    a. \(f(0)\) b. \(f(1)\) c. \(f(3)\) d. \(f(−x)\) e. \(f(a)\) f. \(f(a+h)\)

    Exercise \(\PageIndex{4}\)

    \(f(x)=5x−2\)

    Answer

    a. \(−2\) b. \(3\) c. \(13\) d. \(−5x−2\) e. \(5a−2\) f. \(5a+5h−2\)

    Exercise \(\PageIndex{5}\)

    \(f(x)=\frac{2}{x}\)

    Answer

    a. Undefined b. \(2\) c. \(23\) d. \(−\frac{2}{x}\) e \(\frac{2}{a}\) f. \(\frac{2}{a+h}\)

    Exercise \(\PageIndex{6}\)

    \(f(x)=\sqrt{6x+5}\)

    Answer

    a. \(\sqrt{5}\) b. \(\sqrt{11}\) c. \(\sqrt{23}\) d. \(\sqrt{−6x+5}\) e. \(\sqrt{6a+5}\) f. \(\sqrt{6a+6h+5}\)

    Exercise \(\PageIndex{7}\)

    \(f(x)=|x−7|+8\)

    Answer

    a. \(15\) b. \(14\) c. \(12\) d. \(|x+7|+8\) e. \(|a−7|+8\) f. \(|a+h−7|+8\)

    Exercise \(\PageIndex{8}\)

    \(f(x)=\frac{x−2}{3x+7}\)

    Answer

    a. \frac{-2}{7} b. \(-.1\) c. \(\frac{1}{17}\) d. \(-\frac{x+2}{-3x+7}\) e \(\frac{a−2}{3a+7}\) f. \(\frac{a+h−2}{3a+3h+7}\)

    Exercise \(\PageIndex{9}\)

    \(f(x)=9\)

    Answer

    a. 9 b. 9 c. 9 d. 9 e. 9 f. 9

    For the following exercises, find the domain, range, and all zeros/intercepts, if any, of the functions.

    Exercise \(\PageIndex{10}\)

    \(g(x)=\sqrt{8x−1}\)

    Answer

    \(x≥\frac{1}{8};y≥0;x=\frac{1}{8}\); no y-intercept

    Exercise \(\PageIndex{11}\)

    \(f(x)=−1+\sqrt{x+2}\)

    Answer

    \(x≥−2;y≥−1;x=−1;y=−1+\sqrt{2}\)

    Exercise \(\PageIndex{12}\)

    \(g(x)=\frac{3}{x−4}\)

    Answer

    \(x≠4;y≠0\); no x-intercept; \(y=−\frac{3}{4}\)

    Exercise \(\PageIndex{13}\)

    \(g(x)=\sqrt{\frac{7}{x−5}}\)

    Answer

    \(x>5;y>0\); no intercepts

    Exercise \(\PageIndex{14}\)

    \(f(x)=\frac{x}{x^2−16}\)

    Answer

    \(x≠\pm 4\); \(x=0,y=0\)

    Contributors and Attributions

    Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

    Pamini Thangarajah (Mount Royal University, Calgary, Alberta, Canada)


    1.0E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?