1.2E: Exercises
- Page ID
- 10658
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
In exercises 1 - 4, consider the graph of the function\(y=f(x)\) shown here. Which of the statements about \(y=f(x)\) are true and which are false? Explain why a statement is false.
1) \(\displaystyle \lim_{x→10}f(x)=0\)
2) \(\displaystyle \lim_{x→−2^+}f(x)=3\)
- Answer
- False; \(\displaystyle \lim_{x→−2^+}f(x)=+∞\)
3) \(\displaystyle \lim_{x→−8}f(x)=f(−8)\)
4) \(\displaystyle \lim_{x→6}f(x)=5\)
- Answer
- False; \(\displaystyle \lim_{x→6}f(x)\) DNE since \(\displaystyle \lim_{x→6^−}f(x)=2\) and \(\displaystyle \lim_{x→6^+}f(x)=5\).
Exercise \(\PageIndex{2}\)
In exercises 1 - 5, use the following graph of the function \(y=f(x)\) to find the values, if possible. Estimate when necessary.
1) \(\displaystyle \lim_{x→1^−}f(x)\)
2) \(\displaystyle \lim_{x→1^+}f(x)\)
- Answer
- \(2\)
3) \(\displaystyle \lim_{x→1}f(x)\)
4) \(\displaystyle \lim_{x→2}f(x)\)
- Answer
- \(1\)
5) \(f(1)\)
Exercise \(\PageIndex{3}\)
In exercises 1 - 4, use the graph of the function \(y=f(x)\) shown here to find the values, if possible. Estimate when necessary.
1) \(\displaystyle \lim_{x→0^−}f(x)\)
- Answer
- \(1\)
2) \(\displaystyle \lim_{x→0^+}f(x)\)
3) \(\displaystyle \lim_{x→0}f(x)\)
- Answer
- DNE
4) \(\displaystyle \lim_{x→2}f(x)\)
Exercise \(\PageIndex{4}\)
In exercises 1 - 6, use the graph of the function \(y=f(x)\) shown here to find the values, if possible. Estimate when necessary.
1) \(\displaystyle \lim_{x→−2^−}f(x)\)
- Answer
- \(0\)
2) \(\displaystyle \lim_{x→−2^+}f(x)\)
3) \(\displaystyle \lim_{x→−2}f(x)\)
- Answer
- DNE
4) \(\displaystyle \lim_{x→2^−}f(x)\)
5) \(\displaystyle \lim_{x→2^+}f(x)\)
- Answer
- \(2\)
6) \(\displaystyle \lim_{x→2}f(x)\)
Exercise \(\PageIndex{5}\)
1. In exercises a-c, use the graph of the function \(y=g(x)\) shown here to find the values, if possible. Estimate when necessary.
a) \(\displaystyle \lim_{x→0^−}g(x)\)
- Answer
- \(3\)
b) \(\displaystyle \lim_{x→0^+}g(x)\)
c) \(\displaystyle \lim_{x→0}g(x)\)
- Answer
- DNE
2. In exercises a-c, use the graph of the function \(y=h(x)\) shown here to find the values, if possible. Estimate when necessary.
a) \(\displaystyle \lim_{x→0^−}h(x)\)
b) \(\displaystyle \lim_{x→0^+}h(x)\)
- Answer
- \(0\)
c) \(\displaystyle \lim_{x→0}h(x)\)
Exercise \(\PageIndex{6}\)
In exercises a-e, use the graph of the function \(y=f(x)\) shown here to find the values, if possible. Estimate when necessary.
a) \(\displaystyle \lim_{x→0^−}f(x)\)
- Answer
- \(-2\)
b) \(\displaystyle \lim_{x→0^+}f(x)\)
c) \(\displaystyle \lim_{x→0}f(x)\)
- Answer
- DNE
d) \(\displaystyle \lim_{x→1}f(x)\)
e) \(\displaystyle \lim_{x→2}f(x)\)
- Answer
- \(0\)
Exercise \(\PageIndex{7}\)
In exercises 1 - 5, sketch the graph of a function with the given properties.
1) \(\displaystyle \lim_{x→2}f(x)=1, \quad \lim_{x→4^−}f(x)=3, \quad \lim_{x→4^+}f(x)=6, \quad x=4\) is not defined.
2) \(\displaystyle \lim_{x→−∞}f(x)=0, \quad \lim_{x→−1^−}f(x)=−∞, \quad \lim_{x→−1^+}f(x)=∞,\quad \lim_{x→0}f(x)=f(0), \quad f(0)=1, \quad \lim_{x→∞}f(x)=−∞\)
- Answer
-
Answers may vary
3) \(\displaystyle \lim_{x→−∞}f(x)=2, \quad \lim_{x→3^−}f(x)=−∞, \quad \lim_{x→3^+}f(x)=∞, \quad \lim_{x→∞}f(x)=2, \quad f(0)=-\frac{1}{3}\)
4) \(\displaystyle \lim_{x→−∞}f(x)=2,\quad \lim_{x→−2}f(x)=−∞,\quad \lim_{x→∞}f(x)=2,\quad f(0)=0\)
- Answer
-
Answer may vary
5) \(\displaystyle \lim_{x→−∞}f(x)=0,\quad \lim_{x→−1^−}f(x)=∞,\quad \lim_{x→−1^+}f(x)=−∞, \quad f(0)=−1, \quad \lim_{x→1^−}f(x)=−∞, \quad \lim_{x→1^+}f(x)=∞, \quad \lim_{x→∞}f(x)=0\)
Exercise \(\PageIndex{8}\)
1) Shock waves arise in many physical applications, ranging from supernovas to detonation waves. A graph of the density of a shock wave with respect to distance, \(x\), is shown here. We are mainly interested in the location of the front of the shock, labeled \(X_{SF}\) in the diagram.
a. Evaluate \(\displaystyle \lim_{x→X_{SF}^+}ρ(x)\).
b. Evaluate \(\displaystyle \lim_{x→X_{SF}^−}ρ(x)\).
c. Evaluate \(\displaystyle \lim_{x→X_{SF}}ρ(x)\). Explain the physical meanings behind your answers.
- Answer
- a. \(ρ_2\) b. \(ρ_1\) c. DNE unless \(ρ_1=ρ_2\). As you approach \(X_{SF}\) from the right, you are in the high-density area of the shock. When you approach from the left, you have not experienced the “shock” yet and are at a lower density.
2) A track coach uses a camera with a fast shutter to estimate the position of a runner with respect to time. A table of the values of position of the athlete versus time is given here, where \(x\) is the position in meters of the runner and \(t\) is time in seconds. What is \(\displaystyle \lim_{t→2}x(t)\)? What does it mean physically?
\(t(sec)\) | \(x(m)\) |
---|---|
1.75 | 4.5 |
1.95 | 6.1 |
1.99 | 6.42 |
2.01 | 6.58 |
2.05 | 6.9 |
2.25 | 8.5 |
Exercise \(\PageIndex{9}\) Terms and Concepts
- What are the ways in which a limit may fail to exist?
- T/F: If \(\lim\limits_{x\to1-}f(x)=5\), then \(\lim\limits_{x\to1}f(x)=5\)
- T/F: If \(\lim\limits_{x\to1-}f(x)=5\), then \(\lim\limits_{x\to1+}f(x)=5\)
- T/F: If \(\lim\limits_{x\to1}f(x)=5\), then \(\lim\limits_{x\to1-}f(x)=5\)
- T/F: If \(\lim\limits_{x\to 1^-}f(x)=-\infty\), then \(\lim\limits_{x\to 1^+}f(x)=\infty\).
- T/F: If \(\lim\limits_{x\to 5}f(x)=\infty\), then \(f\) has a vertical asymptote at \(x=5\).
- Answer
-
Under construction.
Exercise \(\PageIndex{10}\): Finding limits using Graphs
Evaluate each expression using the given graph of \(f(x)\).
1.
- Answer
-
(a)2,(b)2,(c) 2,(d) 1, (e)DNE, (f)1
2.
- Answer
-
Under construction.
3.
- Answer
-
Under construction.
4.
- Answer
-
Under construction.
- Answer
-
Under construction.
5..
- Answer
-
Under construction.
6.
- Answer
-
Under construction.
7.
- Answer
-
Under construction.
Exercise \(\PageIndex{11}\): Infinite limits
In Exercises 1-6, evaluate the given limits using the graph of the function.
1. \(f(x) = \frac{1}{(x+1)^2}\)
(a) \(\lim\limits_{x\to -1^-}f(x)\)
(b) \(\lim\limits_{x\to -1^+}f(x)\)
2. \(f(x) = \frac{1}{(x-3)(x-5)^2}\)
(a) \(\lim\limits_{x\to 3^-}f(x)\)
(b) \(\lim\limits_{x\to 3^+}f(x)\)
(c) \(\lim\limits_{x\to 3}f(x)\)
(d) \(\lim\limits_{x\to 5^-}f(x)\)
(e) \(\lim\limits_{x\to 5^+}f(x)\)
(f) \(\lim\limits_{x\to 5}f(x)\)
3. \(f(x) = \frac{1}{e^x+1}\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
(c) \(\lim\limits_{x\to 0^-}f(x)\)
(d) \(\lim\limits_{x\to 0^+}f(x)\)
4. \(f(x) = x^2\sin (\pi x)\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
5. \(f(x)=\cos (x)\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
6. \(f(x) = 2^x +10\)
(a) \(\lim\limits_{x\to -\infty}f(x)\)
(b) \(\lim\limits_{x\to \infty}f(x)\)
- Answer
-
Under construction.
Exercise \(\PageIndex{11}\): One sided limits
Given \( \displaystyle f(x)= \left\{ \begin{array}{ccc}
x^3+1 & \mbox{ if } x <0 \\
0 & \mbox{ if } x =0 \\
\sqrt{x+1}-2 & \mbox{ if } x >0 \\
\end{array}
\right.\)
Identify each limit:
- \( \displaystyle \lim_{x \to 0^-} f(x)\)
- \( \displaystyle \lim_{x \to 0^+} f(x)\)
- \( \displaystyle \lim_{x \to 0} f(x)\)
- \( \displaystyle \lim_{x \to -1} f(x)\)
- \( \displaystyle \lim_{x \to 3} f(x)\)
- Hint:
-
Draw a graph.
- Answer
-
11, -1, DNE, 0, 0
- Solution:
-
- \( \displaystyle \lim_{x \to 0^-} f(x)=0^3+11\)
- \( \displaystyle \lim_{x \to 0^+} f(x)= \sqrt{0+1}-2=-1 \)
- Since \( \displaystyle \lim_{x \to 0^-} f(x) \ne \displaystyle \lim_{x \to 0^+} f(x)\), \( \displaystyle \lim_{x \to 0} f(x) =\) DNE. \
- \(\displaystyle \lim_{x \to -1} f(x)=(-1)^3+1=0\)
- \( \displaystyle \lim_{x \to 3} f(x)= \sqrt{3+1}-2=0\)
Exercise \(\PageIndex{12}\): Infinite limits
\(\displaystyle\lim_{y \to 6^-} \frac{y+6}{y^2-36}\)
- Answer
-
Since \(\displaystyle\lim_{y \to 6^-} \frac{y+6}{y^2-36}= \frac{12}{0}\), and \( \frac{5.9+6}{(5.9)^2-36}<0,\)
\(\displaystyle\lim_{y \to 6^-} \frac{y+6}{y^2-36} =-\infty\).
Contributors and Attributions
Gregory Hartman (Virginia Military Institute). Contributions were made by Troy Siemers and Dimplekumar Chalishajar of VMI and Brian Heinold of Mount Saint Mary's University. This content is copyrighted by a Creative Commons Attribution - Noncommercial (BY-NC) License. http://www.apexcalculus.com/
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.