4.1E: Exercises
- Page ID
- 13730
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
1. Why is u-substitution referred to as change of variable?
2. If \(\displaystyle f=g∘h\), when reversing the chain rule, \(\displaystyle \frac{d}{d}x(g∘h)(x)=g′(h(x))h′(x)\), should you take \(\displaystyle u=g(x)\) or u= \(\displaystyle h(x)?\)
- Answer
-
\(\displaystyle u=h(x)\).
Exercise \(\PageIndex{2}\)
In the following exercises, verify each identity using differentiation. Then, using the indicated u-substitution, identify f such that the integral takes the form \(\displaystyle∫f(u)du.\)
1. \(\displaystyle∫x\sqrt{x+1}x=\frac{2}{15}(x+1)^{3/2}(3x−2)+C;u=x+1\)
2. \(\displaystyle∫\frac{x^2}{\sqrt{x−1}}dx(x>1)=\frac{2}{15}\sqrt{x−1}(3x^2+4x+8)+C;u=x−1\)
- Answer
-
\(\displaystyle f(u)=\frac{(u+1)^2}{\sqrt{u}}\)
3. \(\displaystyle∫x\sqrt{4x^2+9}dx=\frac{1}{12}(4x^2+9)^{3/2}+C;u=4x^2+9\)
4. \(\displaystyle∫\frac{x}{\sqrt{4x^2+9}}dx=\frac{1}{4}\sqrt{4x^2+9}+C;u=4x^2+9\)
- Answer
-
\(\displaystyle du=8xdx;f(u)=\frac{1}{8\sqrt{u}}\)
5. \(\displaystyle∫\frac{x}{(4x^2+9)^2}dx=−\frac{1}{8(4x^2+9)};u=4x^2+9\)
- Answer
-
\(\displaystyle du=8xdx;f(u)=\frac{1}{8u^2}\)
Exercise \(\PageIndex{3}\)
In the following exercises, find the antiderivative using the indicated substitution.
1. \(\displaystyle ∫(x+1)^4dx;u=x+1\)
- Answer
-
\(\displaystyle \frac{1}{5}(x+1)^5+C\)
2. \(\displaystyle∫(x−1)^5dx;u=x−1\)
3. \(\displaystyle∫(2x−3)^{−7}dx;u=2x−3\)
- Answer
-
\(\displaystyle−\frac{1}{12(3−2x)^6}+C\)
4. \(\displaystyle∫(3x−2)^{−11}dx;u=3x−2\)
5. \(\displaystyle∫\frac{x}{\sqrt{x^2+1}}dx;u=x^2+1\)
- Answer
-
\(\displaystyle\sqrt{x^2+1}+C\)
6. \(\displaystyle∫\frac{x}{\sqrt{1−x^2}}dx;u=1−x^2\)
7. \(\displaystyle∫(x−1)(x^2−2x)^3dx;u=x^2−2x\)
- Answer
-
\(\displaystyle\frac{1}{8}(x^2−2x)^4+C\)
8. \(\displaystyle∫(x^2−2x)(x^3−3x^2)^2dx;u=x^3=3x^2\)
9. \(\displaystyle∫cos^3θdθ;u=sinθ (Hint:cos^2θ=1−sin^2θ)\)
- Answer
-
\(\displaystylesinθ−\frac{sin^3θ}{3}+C\)
10. \(\displaystyle∫sin^3θdθ;u=cosθ (Hint:sin^2θ=1−cos^2θ)\)
Exercise \(\PageIndex{4}\)
In the following exercises, use a suitable change of variables to determine the indefinite integral.
1. \(\displaystyle∫x(1−x)^{99}dx\)
- Answer
-
\(\displaystyle\frac{(1−x)^{101}}{101}−\frac{(1−x)^{100}}{100}+C\)
2. \(\displaystyle∫t(1−t^2)^{10}dt\)
3. \(\displaystyle∫(11x−7)^{−3}dx\)
- Answer
-
\(\displaystyle−\frac{1}{22(7−11x^2)}+C\)
4. \displaystyle∫(7x−11)^4dx\)
5. \(\displaystyle∫cos^3θsinθdθ\)
- Answer
-
\(\displaystyle−\frac{cos^4θ}{4}+C\)
6. \(\displaystyle∫sin^7θcosθdθ\)
7. \(\displaystyle∫cos^2(πt)sin(πt)dt\)
- Answer
-
\(\displaystyle−\frac{cos^3(πt)}{3π}+C\)
8. \(\displaystyle∫sin^2xcos^3xdx (Hint:sin^2x+cos^2x=1)\)
9. \(\displaystyle∫tsin(t^2)cos(t^2)dt\)
- Answer
-
\(\displaystyle−\frac{1}{4}cos^2(t^2)+C\)
10. \(\displaystyle∫t^2cos^2(t^3)sin(t^3)dt\)
11. \(\displaystyle∫\frac{x^2}{(x^3−3)^2}dx\)
- Answer
-
\(\displaystyle−\frac{1}{3(x^3−3)}+C\)
12. \(\displaystyle∫\frac{x^3}{\sqrt{1−x^2}}dx\)
13. \(\displaystyle∫\frac{y^5}{(1−y^3)^{3/2}}dy\)
- Answer
-
\(\displaystyle−\frac{2(y^3−2)}{3\sqrt{1−y^3}}\)
14. \(\displaystyle∫cosθ(1−cosθ)^{99}sinθdθ\)
15. \(\displaystyle∫(1−cos^3θ)^{10}cos^2θsinθdθ\)
- Answer
-
\(\displaystyle\frac{1}{33}(1−cos^3θ)^{11}+C\)
16. \(\displaystyle∫(cosθ−1)(cos^2θ−2cosθ)^3sinθdθ\)
17. \(\displaystyle∫(sin^2θ−2sinθ)(sin^3θ−3sin^2θ^)3cosθdθ\)
- Answer
-
\(\displaystyle\frac{1}{12}(sin^3θ−3sin^2θ)^4+C\)
Exercise \(\PageIndex{5}\)
1) \(\displaystyle \int \frac{ x^3\ dx}{\sqrt{1-x^2}} \)
2) \(\displaystyle\int (\csc x)(\cot x)(e^{\csc x})\,\,dx\)
3)\(\displaystyle \int \frac{1}{e^x+e^{-x}}dx\)
4) \(\displaystyle \int \frac {1}{\sqrt{4-x^2}} \ dx \)
5) \(\displaystyle \int \frac{\sqrt{x^2-4}}{x} \ dx \)
6) \(\displaystyle \int \frac{1}{x^2 + 6x + 13} dx\)
- Answer
-
Under Construction
Contributors
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.
Pamini Thangarajah (Mount Royal University, Calgary, Alberta, Canada)