Skip to main content
Mathematics LibreTexts

4.7E: Exercises

  • Page ID
    13774
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    In the following exercises, use a change of variables to evaluate the definite integral.

    1. \(\displaystyle∫^1_0x\sqrt{1−x^2}dx\)

    2. \(\displaystyle∫^1_0\frac{x}{\sqrt{1+x^2}}dx\)

    Answer

    \(\displaystyleu=1+x^2,du=2xdx,\frac{1}{2}∫^2_1u^{−1/2}du=\sqrt{2}−1\)

    3. \(\displaystyle∫^2_0\frac{t}{\sqrt{5+t^2}}dt\)

    4. \(\displaystyle∫^1_0\frac{t}{\sqrt{1+t^3}}dt\)

    Answer

    \(\displaystyleu=1+t^3,du=3t^2,\frac{1}{3}∫^2_1u^{−1/2}du=\frac{2}{3}(\sqrt{2}−1)\)

    5. \(\displaystyle∫^{π/4}_0sec^2θtanθdθ\)

    6. \(\displaystyle∫^{π/4}_0\frac{sinθ}{cos^4θ}dθ\)

    Answer

    \(\displaystyleu=cosθ,du=−sinθdθ,∫^1_{1/\sqrt{2}}u^{−4}du=\frac{1}{3}(2\sqrt{2}−1)\)

    Exercise \(\PageIndex{2}\)

    In the following exercises, evaluate the definite integral.

    1. \(\displaystyle ∫^2_1\frac{1+2x+x^2}{3x+3x^2+x^3}dx\)

    Answer

    \(\displaystyle \frac{1}{3}ln(\frac{26}{7})\)

    2. \(\displaystyle ∫^{π/4}_0tanxdx\)

    3. \(\displaystyle ∫^{π/3}_0\frac{sinx−cosx}{sinx+cosx}dx\)

    Answer

    \(\displaystyle ln(\sqrt{3}−1)\)

    4. \(\displaystyle ∫^{π/2}_{π/6}cscxdx\)

    5. \(\displaystyle ∫^{π/3}_{π/4}cotxdx\)

    Answer

    \(\displaystyle \frac{1}{2}ln\frac{3}{2}\)

    Exercise \(\PageIndex{3}\)

    In the following exercises, use a change of variables to show that each definite integral is equal to zero.

    1. \(\displaystyle∫^π_0cos^2(2θ)sin(2θ)dθ\)
    2. \(\displaystyle∫^\sqrt{π}_0tcos(t^2)sin(t^2)dt\)
    Answer

    \(\displaystyle u=sin(t^2);\) the integral becomes \(\displaystyle\frac{1}{2}∫^0_0udu.\)

    3. \(\displaystyle∫^1_0(1−2t)dt\)

    4. \(\displaystyle∫^1_0\frac{1−2t}{(1+(t−\frac{1}{2})^2)}dt\)

    Answer

    \(\displaystyleu=(1+(t−\frac{1}{2})^2);\) the integral becomes \(\displaystyle−∫^{5/4}_{5/4}\frac{1}{u}du\).

    5. \(\displaystyle∫^π_0sin((t−\frac{π}{2})^3)cos(t−\frac{π}{2})dt\)

    6. \(\displaystyle∫^2_0(1−t)cos(πt)dt\)

    Answer

    \(\displaystyle∫^{−1}_1ucos(π(1−u))du=∫^{−1}_1u[cosπcosu−sinπsinu]du=−∫^{−1}_1ucosudu=∫^{1−}_1ucosudu=0\)

    since the integrand is odd.

    7. \(\displaystyle∫^{3π/4}_{π/4}sin^2tcostdt\)


    4.7E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?