2.4: Introduction to cyclic groups
- Page ID
- 131666
Let \((G,\star)\) be a group.
Let \(a \in G\), then the order of the element \(a \in G\), be the smallest positive integer \(n\) s.t. \(a^n=e\). If no such \(n\) exists, we say that the order is infinite.
Let \((G,\star)\) be a group.
Let \(a \in G\), then define \(<a>=\{a^m|m\in \mathbb{Z}\}\).
Let \((G,\star)\) be a group.
Let \(a \in G\), then
\(<a> \leq G.\)
Consider the group \(\mathbb{Z}_{10}\) with addition modulo 10. What is the order of its elements?
Consider that \(\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}\). Note that \(\{0\}\) is the identity and its order is \(1. \)
element |
Order |
Calculations |
0 |
\(|<0>|=1\) |
|
1 |
\(|<1>|=10\) |
\(1^{10}\equiv 0 \pmod{10}\) |
2 |
\(|<2>|=5\) |
\(2^{1}\equiv 2\pmod{10}\), \(2^2 \equiv 4 \pmod{10}\), \(2^{3}\equiv 6 \pmod{10}\), \(2^{4} \equiv 8 \pmod{10}\), and \(2^{5}\equiv 0 \pmod{10}\). |
3 |
\(|<3>|=10\) |
\(3^1\equiv 3 \pmod{10}\), \(3^2\equiv 6 \pmod{10}\) , \(3^3\equiv 9 \pmod{10}\), \(3^4\equiv 2 \pmod{10}\), \(3^5\equiv 5 \pmod{10}\), \(3^6\equiv 8 \pmod{10}\), \(3^7\equiv 1 \pmod{10}\), \(3^8\equiv 4 \pmod{10}\), \(3^9\equiv 7 \pmod{10}\), and \(3^{10}\equiv 0 \pmod{10}\). |
4 |
\(|<4>|=5\) |
\(4^1 \equiv 4 \pmod{10}\), \(4^2 \equiv 8 \pmod{10}\), \(4^3 \equiv 2 \pmod{10}\), \(4^4 \equiv 6 \pmod{10}\), and \(4^5 \equiv 0 \pmod{10}\). |
5 |
\(|<5>|=2\) |
\(5^1 \equiv 5 \pmod{10}\), and \(5^2 \equiv 0 \pmod{10}\). |
6 |
\(|<6>|=5\) |
\(6^1 \equiv 6 \pmod{10}\), \(6^2 \equiv 2 \pmod{10}\), \(6^3 \equiv 8 \pmod{10}\), \(6^4 \equiv 4 \pmod{10}\) and \(6^5 \equiv 0 \pmod{10}\). |
7 |
\(|<7>|=10\) |
\(7^1 \equiv 7 \pmod{10}\), \(7^2 \equiv 4 \pmod{10}\), \(7^3 \equiv 1 \pmod{10}\), \(7^4 \equiv 8 \pmod{10}\), \(7^5 \equiv 5 \pmod{10}\), \(7^6 \equiv 2 \pmod{10}\), \(7^7 \equiv 9 \pmod{10}\), \(7^8 \equiv 6 \pmod{10}\), \(7^9 \equiv 3 \pmod{10}\), and \(7^{10} \equiv 0 \pmod{10}\). |
8 |
\(|<8>|=5\) |
\(8^1 \equiv 8 \pmod{10}\), \(8^2 \equiv 6 \pmod{10}\), \(8^3 \equiv 4 \pmod{10}\), \(8^4 \equiv 2 \pmod{10}\), and \(8^5 \equiv 0 \pmod{10}\). |
9 |
\(|<9>|=10\) |
\(9^1 \equiv 9 \pmod{10}\), \(9^2 \equiv 8 \pmod{10}\), \(9^3 \equiv 7 \pmod{10}\), \(9^4 \equiv 6 \pmod{10}\), \(9^5 \equiv 5 \pmod{10}\), \(9^6 \equiv 4 \pmod{10}\), \(9^7 \equiv 3 \pmod{10}\), \(9^8 \equiv 2 \pmod{10}\), \(9^9 \equiv 1 \pmod{10}\), and \(9^10 \equiv 0 \pmod{10}\). |
Let \((G,\star)\) be a group.
Let \(a \in G\), then \(<a> \) is called cyclic subgroup of \( G.\)
If \( G=<a>\) for some \(a \in G\), then \(G\) is called a cyclic group.
\(U(15)=\{1,2,4,7,8,11,13,14\}\) and \(\star= \bullet \pmod{15}\).
Let \(a \in U(15)\) and \(b \in U(15)\).
Then \(a(x)+15(y)=1\) and \(ab(x)+15by=b\) therefore \(U(15)\) is closed.
Since \(U(15)\) is a finite group, the order of the group is \(|U(15)|=8\).
However, \(U(15)\) is not a cyclic group.
Proof: (by exhaustion)
Let \(a \in U(15)\).
We will show that \(\not \exists a \in U(15)\), s.t. \(|<a>|=8\).
\(|<1>|=1\) since \(1^1 \equiv 1 \pmod{15}\)
\(|<2>|=4\) since \(2^4 \equiv 1 \pmod{15}\)
\(|<4>|=2\) since \(4^2 \equiv 1 \pmod{15}\)
\(|<7>|=4\) since \(7^4 \equiv 1 \pmod{15}\).
\(|<8>|=4\) since \(8^4 \equiv 1 \pmod{15}\).
\(|<11>|=2\) since \(11^2 \equiv 1 \pmod{15}\).
\(|<13>|=4\) since \(13^4 \equiv 1 \pmod{15}\).
\(|<14>|=2\) since \(14^2 \equiv 1 \pmod{15}\).
Since \(\not \exists a \in U(15)\), s.t. \(|<a>|=8\), \(U(15)\) is not a cyclic group.◻
Prove that \((U(14),(\bullet \pmod{14}))\) is cyclic.
Proof:
We will show that \(\exists a \in U(14)\) s.t. \(|<a>|=|U(14)|\).
Consider \(U(14)=\{1,3,5,9,11,13\}\) where \(|U(14)|=6\).
Consider \(3^1\equiv 3 \pmod{14}\), \(3^2\equiv 9 \pmod{14}\), \(3^3 \equiv 13 \pmod{14}\), \(3^4\equiv 11 \pmod{14}\), \(3^5\equiv 5 \pmod{14}\) and \(3^6 \equiv 1 \pmod{14}\).
\(|<3>|=6\) since \(3^6 \equiv 1 \pmod{14}\).
Thus \(|<3>|=6\).
Therefore, \(U(14)\) is cyclic and \(3\) is a generator.◻
Is \((\mathbb{Z},+)\) cyclic group? If so, what are the possible generators?
Yes, \((\mathbb{Z},+)\) is a cyclic group that is generated by \(\pm 1\).
Proof of being a cyclic group:
Since the group generated by \(1\) contains \(1,\) the identity \(0,\) and the inverse of \(1, (-1),\) as well as all multiples of \(1 \) and \((-1)\), \((\mathbb{Z},+)\) is cyclic.
Possible Generators:
Note \(1^n\) is \(1+1+\cdots+1\) with \(n\) terms when \(n>0\) and \((-1)+(-1)+\cdots+(-1)\) with \(n\) terms when \(n\) is \(<0\).
We shall show \(\mathbb{Z}=<1>=<-1>\).
Consider that \(1^n\) means \(1+1+\cdots +1\) with \(n\) terms and that \(1^{-n}\) means \(+(-1)+(-1)+\cdots+(-1)\) with \(n\) terms.
It should be clear that \(1^n\) will generate \(\mathbb{Z}_+\) and that \(1^{-n}\) will generate \(\mathbb{Z}_-\). Note that \(1^0\) is interpreted as \(0\cdot 1=0\).
\(<1>=\{ \ldots, -3,-2,-1,0,1,2,3,\ldots \}\).
Thus \(<1>\) is a generator of \((\mathbb{Z},+)\).
Similarly, we will show that \(<-1>\) is a generator of \((\mathbb{Z},+)\).
Consider that \((-1)^n\) means \(+(-1)+(-1)+\cdots+(-1)\) with \(n\) terms and that \(1^{-n}\) means \(1+1+\cdots +1\) with \(n\) terms.
It should be clear that \(1^n\) will generate \(\mathbb{Z}_-\) and that \(1^{-n}\) will generate \(\mathbb{Z}_+\). \(<-1>=\{ \ldots, -3,-2,-1,0,1,2,3,\ldots \}\).
Thus the generators of \((\mathbb{Z},+)\) are \(<1>\) and \(<-1>\).
Properties:
Cyclic groups are abelian.
- Proof:
-
Let \((G,\star)\) be a group.
If \(G\) is cyclic, then \(G\) is abelian.
Assume that \(G\) is cyclic.
Then \(G=<g>\) for some \(g \in G\).
Let \(a,b \in G\).
We will show \(ab=ba\).
Then \(a=g^m\) and \(b=g^n\), \(m,n \in \mathbb{Z}\).
Consider \(ab=g^mg^n\)
\(=g^{m+n}\)
\(=g^{n+m}\)
\(=g^ng^m\)
\(=ba\)
Hence \(G\) is abelian.◻
The converse is not true. Specifically, if a group is abelian, it is not necessarily cyclic. A counterexample is \((U(15), \bullet)\) since it is abelian but not cyclic.
A subgroup of a cyclic group will be cyclic.
Let \((G, \star)\) be a cyclic group. If \(H \le G\), then \(H\) is a cyclic group.
- Proof
-
Let \(G=<g>, \; g \in G\).
We will show \(H=<g^k>\) for some \(k \in \mathbb{Z}\).
There are two cases to consider.
Case 1: \(H=\{e\}\)
Let \(H=\{e\}\), then we are done since \(e \star e=e\) thus \(|H|=|<e>|=1\).
Case 2: \(H \ne \{e\}\)
Let \(H \ne \{e\}\).
Thus \(\exists h \in H\) s.t. \(h \ne e\).
Since \(h \in H\), \(h \in G\).
Hence \(h=g^m\) for some \(m \in \mathbb{Z}\).
Without loss of generality, we may assume \(m \in \mathbb{N}\).
Define \(S=\{n\in \mathbb{N}|g^n \in H\} \subseteq \mathbb{N}\).
Since \(S(\ne \{\})\) by the well ordering principle \(S\) has a smallest element \(k\).
Let \(k \in \mathbb{Z}\).
We shall show that \(H=<g^k>\).
Since \(g^k \in H\), \(<g^k> \le H\).
Let \(h \in H\).
We shall show that \(h \in <g^k>\).
Since \(h \in H\), \(h=g^m, m \in \mathbb{Z}\).
Since \(k,m \in \mathbb{Z}\), by the division algorithm, there exists \(q,r\) s.t. \(m=qk+r, \; 0\le r<k\).
Then \(g^m=g^{qk}g^r\) and \(g^{m-qk}=g^r\).
Since \(g^m, g^{qk} \in H\), then \(g^r \in H\).
Since \(k\) is the smallest, \(r=0\). (I think this is because \(g^0=e\))
Therefore \(g^m=(g^k)^q \in <g^k>\).
Thus \(H \le <g^k>\).◻
Converse is not true.
Let \(G\) be a cyclic group s.t. \(G=<a>\) and \(|G|=n\).
Then \(a^k=e\) iff \(n|k\).
- Proof
-
Let \(G=<a>\) with \(a^n=e\).
\(<a>=\{e,a,a^2\ldots,a^{n-1}\}\).
Let \(a^k=e, \; k \in \mathbb{Z}\).
Since by the division algorithm, unique integers q and r exist such that \(k=nq+r, \; 0\le r<n, \; q,r \in \mathbb{Z}\).
Consider \(a^r=a^{k-nq}\)
\(=a^k(a^n)^{-q}\) Note: \(a^k=e\) is our assumption & \(n\) is the order of group.
\(=ee^{-q}\)
\(=e\).
Hence \(r=0\).
Thus \(k=nq\).
Therefore \(n|k\).
Conversely, assume that \(n|k\).
Then \(k=nm, m \in \mathbb{Z}\).
\(a^k=a^{nm}\).
\(=(a^n)^m\)
\(=e^m\)
\(=e\).
Hence the result.◻
\(<a^k>=<a^{\gcd(n,k)}>\)
Let \(G=<a>\) be a cyclic group with \(|G|=n\).
Let \(b \in G\).
If \(b=a^k\) then \(|b|=\frac{n}{d}, \; d=\gcd(k,n)\).
- Answer
-
Let \(G=<a>\) with \(|G|=n\) and \(a \in G\).
Let \(a^n=e\).
We will show that \(<a^k>=<a^{\gcd{(n,k)}}>\).
Let \(x \in <a^k>\).
Since \(\gcd(n,k)=d\) for some \(d \in \mathbb{Z}_+\), \(d|n\) and \(d|k\).
Thus, \( k=md, m\in \mathbb{Z}\).
Consider an arbitrary power of \(a^k\), \((a^k)^j \in <a^k>\).
\)(a^k)^j = (a^{md})^j=(a^d)^{jm} \in <a^d> \in <a^{\gcd{(n,k)}}>\).
Let \(d=xn+yk, \; n,k \in \mathbb{Z}\).
Using the division algorithm, \((a^{xn+yk})^h= (a^n)^{xh} (a^k)^{yh}, \;n,k,h \in \mathbb{Z}\)
\(=(a^k)^{yh} \in <a^k>\).
Thus \(a^k = a^d\).
Now we want to show \(|a^k|=\frac{n}{d}\).
Consider \((a^k)^{\frac{n}{d}}=(a^n)^{\frac{k}{d}}=e^{\frac{k}{d}}=e\).
Thus \(|a^k|\le \frac{n}{d}\).
Now consider \((a^d)^{\frac{n}{d}}=(a^n)=e \; \Rightarrow \; |a^d| \le \frac{n}{d}\).
Now consider \(0 \le i <\frac{n}{d}\).
Thus \( di < n\), where \(d\) is positive since it is the greatest common denominator.
Thus \((a^d)^i=a^{di}\ne e\) for \(di<n\).
Then we can show \(|a^d|=\frac{n}{d}\).
Consider \(|a^k|=|<a^k>|=|<a^d>|=|a^d|= \frac{n}{d}\).
Hence \(|a^k|=\frac{n}{d}\).
A group of prime order is cyclic.
Proof:
Let \(G\) be a group s.t. \(|G|=p\), where \(p\) is a prime number.
Let \(g \in G\) s.t. \(<g>\) is a subgroup of \(G\).
Since \(p>1\), \(g \ne \{e\}\).
If \(G\) is cyclic, \(\exists \; g^k=e\), for some \( k \in \mathbb{Z}\).
By the division algorithm, \(k=nq+r\) where \(0 \le r <n\).
Hence, \(e=g^k=g^{nq+r}=g^{nq}g^r=eg^r=g^r\).
Since the smallest positive integer \(k\) such that \(g^k=e\) is \(n\), \(r=0\). Thus \(n|k\).
Conversely, if \(n|k\), then \(k=nm\), \(m \in \mathbb{Z}\).
Consequently, \(g^k=g^{nm}=(g^n)^m=e^m=e\).
Thus, \(|<g>|\) divides \(|G|\) if \(G\) is cyclic.
Consider that the only two divisors of a prime number are the prime number itself and 1.
Since \(p > 1\), \(|G|=p\).
Since \(|G|=p\)\), \(G\) is cyclic.◻
-
List the cyclic subgroups of \(U(30)\).
\(U(30)=\{1,7,11,13,17,19,23,29\}\).
Thus \(|U(30)|=8\).
\(k\) |
Calculations |
\(|k|\) |
7 |
\(7^1 \equiv 7 \pmod{30}\), \(7^2 \equiv 19 \pmod{30}\), \(7^3 \equiv 13 \pmod{30}\), \(7^4 \equiv 1 \pmod{30}\) |
4 |
11 |
\(11^1 \equiv 11 \pmod{30}\), \(11^2 \equiv 1 \pmod{30}\) |
2 |
13 |
\(13^1 \equiv 13 \pmod{30}\), \(13^2 \equiv 19 \pmod{30}\), \(13^3 \equiv 7 \pmod{30}\), \(13^4 \equiv 1 \pmod{30}\) |
4 |
17 |
\(17^1 \equiv 17 \pmod{30}\), \(17^2 \equiv 19 \pmod{30}\), \(17^3 \equiv 23 \pmod{30}\), \(17^4 \equiv 1 \pmod{30}\) |
4 |
19 |
\(19^1 \equiv 19 \pmod{30}\), \(19^2 \equiv 1 \pmod{30}\) |
2 |
23 |
\(23^1 \equiv 23 \pmod{30}\), \(23^2 \equiv 19 \pmod{30}\), \(23^3 \equiv 17 \pmod{30}\), \(23^4 \equiv 1 \pmod{30}\) |
4 |
29 |
\(29^1 \equiv 29 \pmod{30}\), \(29^2 \equiv 1 \pmod{30}\) |
2 |
Since \(\not \exists a \in U(30)\) s.t. \(|<a>|=|U(30)|=8\), \(U(30)\) is not a cyclic group.
However the following subgroups of \(U(30)\) are cyclic: \(\{1,7,13,19\}\), \(\{1,17,19,23\}\), \(\{1,11\}\), \( \{1,19\} \), \(\{1,29\}\) and \(\{1\}\).