Preliminaries
- Page ID
- 10715
Sets
-
Sets are denoted by capital letters.
-
Elements are denoted by lower case letters.
-
Subsets:
-
Every element of B is an element of A, written as \( B\subset A.\)
-
\(B=\{a \in A:\) …..condition on okay!.
-
Trivial subsets of \(A\) are \(A\) and \(\emptyset \) (empty set).
-
-
How do we test if an element belongs to a set?
Example \(\PageIndex{1}\)
\(M_{22}(\mathbb{R}):=\) set of all 2 x 2 matrices with real numbers, where \(\mathbb{R}:=\) set of all real numbers.
Let \(A=\big{\{}\begin{bmatrix}x\end{bmatrix} \in M_{22}(\mathbb{R})|\begin{bmatrix}x\end{bmatrix}\begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}1 &1\\
0 &1\end{bmatrix}\begin{bmatrix}x\end{bmatrix}\big{\}}\).
Determine whether the following entries belong to \(A\).
-
\(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix}\) does not belong to \(A\).
- Answer
-
\(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}1 &1\\
0 &0\end{bmatrix}\) and\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix}=\begin{bmatrix}1 &0\\
0 &0\end{bmatrix}\)Since \(\begin{bmatrix}1 &1\\
0 &0\end{bmatrix} \ne \begin{bmatrix}1 &0\\
0 &0\end{bmatrix}\), \(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix} \notin A\).◻
-
\(\begin{bmatrix}0 & 1\\
0 & 0\end{bmatrix}\) does belong to \(A\).
- Answer
-
\(\begin{bmatrix}0 & 1\\
0 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}0 &1
0 &0\end{bmatrix}\)\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 1\\
0 & 0\end{bmatrix}=\begin{bmatrix}0 &1\\
0 &0\end{bmatrix}\)Since \(\begin{bmatrix}0 &1\\
0 &0\end{bmatrix} = \begin{bmatrix}0 &1\\
0 &0\end{bmatrix}\), \(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix} \in A\).◻
-
\(\begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix}\) does not belong to \(A\).
- Answer
-
\(\begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}0 &0\\
1 &1\end{bmatrix}\)\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix}=\begin{bmatrix}1 &0\\
1 &0\end{bmatrix}\)Since \(\begin{bmatrix}0 &0\\
1 &1\end{bmatrix} \ne \begin{bmatrix}1 &0\\
1 &0\end{bmatrix}\), \(\begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix} \notin A\).◻
-
\(\begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix}\) does not belong to \(A\).
- Answer
-
\(\begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}0 &0\\
0 &1\end{bmatrix}\)\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix}=\begin{bmatrix}0 &1\\
0 &1\end{bmatrix}\)Since \(\begin{bmatrix}0 &0\\
0 &1\end{bmatrix} \ne \begin{bmatrix}0 &1\\
0 &1\end{bmatrix}\), \(\begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix} \notin A\).◻
-
\(\begin{bmatrix}0 & 0\\
0 & 0\end{bmatrix}\). does belong to \(A\).
Solution
This one is obviously true, thus \(\begin{bmatrix}0 & 0\\
0 & 0\end{bmatrix} \in A\).
Notation:
-
\(\cup\) or / union
-
\(\cap\) and / intersection
-
\(\{\}^c\) complement of a set (aka \(\{\}^{'}\)).
-
\(A \backslash B\) is equivalent to \(A \cap B^{'}\).
-
\(\mathbb{Z}=\) set of all integers \(=\{\ldots,-2,-1,0,1,2,\ldots\}\). A countable set.
-
\(\mathbb{Q}=\) set of all rational numbers \(=\{\frac{a}{b}: a,b \in \mathbb{Z}, b \ne 0 \}\). A countable set.
-
\(\mathbb{Q}^c=\) set of all irrational numbers \(=\{\pm e, \pm \pi, \pm \sqrt{2}, \ldots\}\). Not a countable set.
-
\(\mathbb{R}=\) set of all real numbers \(=\mathbb{Q} \cup \mathbb{Q}^c\). Note \(\mathbb{Q} \cap \mathbb{Q}^c=\emptyset\). Not a countable set.
-
\(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}\).
-
The cardinality of a set \(A\) is written as \(|A|\).
Example \(\PageIndex{2}\)
Let \(A=\{1,2,3,5\}\). Therefore \(|A|=4\). In this case \(A\) is called a finite set.
Functions
Mapping
Let \(A\) be a set.
Then \(A \times A\) is the Cartesian product of \(A\).
Example: If \(A = \mathbb{R}\) then this is the Cartesian plane - Like \(\{x,y: x,y \in A\}\).
A function \(f\) is a subset (symbol is \(\subseteq\)) of \(A \times B\) such that for every \(a \in A\) there exists a unique \(b \in B\) such that \(f(a)=b\).
Denoted by \(f: A \rightarrow B\) or \(A \xrightarrow{f} B\).
\(A\) is the domain of the function \(f\).
\(B\) is the co-domain of the function \(f\).
The range of \(f\) is \(f(A)=\big{\{}f(x): x \in A \big{\}} \subseteq B\)
A well-defined function is one that for every value of \(A\), there is one and only one value of \(B\).
Definition:
Let \(f\) be a function from \(A \rightarrow B\).
-
\(f\) is called onto (surjective) if \(f(A)=B\).
-
\(f\) is called one to one (injective) if \(f(x_1)=f(x_2), x_1,x_2 \in A \) then \(x_1=x_2\).
-
\(f\) is bijective if it is surjective and injective.
-
A function can be injective, surjective, bijective (both injective & surjective), or neither.
Example \(\PageIndex{1}\)
Let
\(\mathbb{Q}=\big{\{}\frac{a}{b}: b\ne 0,\text{and } gcd(a,b)=1 \big{\}}\)
and \(f: \mathbb{Q} \rightarrow \mathbb{Z}\) that is defined by
\(f(\frac{a}{b})=a.\)
a) Is \(f\) a well-defined function? b) Is it surjective? c) Is it injective? d) Is it bijective?
Solution
-
The function is well-defined.
Let \(A\) and \(B\) be set.
Let \(a \in A\).
We need to show that if \(f(a)=b\) then \(b\in B\) and if \(f(a)=b_1\) that \(b=b_1\).
We are given \(f: \mathbb{Q} \rightarrow \mathbb{Z}\), which means that this is a function thus \(f(a)\) will map to one and only one element of \(B\). Thus if \(f(a)=b\) and if \(f(a)=b_1\) then \(b=b_1\).
In b) below, we have shown that the function is surjective, thus \)f(a)=b\),
-
The function is surjective
Proof:
We shall show that \(f(\mathbb{Q})=\mathbb{Z}\) by showing that \(f(\mathbb{Q}) \subseteq \mathbb{Z}\) and \(\mathbb{Z} \subseteq f(\mathbb{Q})\).
Since we are given \(f: \mathbb{Q} \rightarrow \mathbb{Z}\), \(f(\mathbb{Q}) \subseteq \mathbb{Z}\).
Next, we shall show that \(\mathbb{Z} \subseteq f(\mathbb{Q})\).
Let \(n \in \mathbb{Z}\), then \(\frac{n}{1} \in \mathbb{Q}\) and \(f\big(\frac{n}{1}\big)=n\).
Hence \(n \in f(\mathbb{Q})\).
Hence \(\mathbb{Z} \subseteq f(\mathbb{Q})\).
Since \(\mathbb{Z} \subseteq f(\mathbb{Q})\) and \(f(\mathbb{Q}) \subseteq \mathbb{Z}, f(\mathbb{Q})=\mathbb{Z}\).◻
-
The function is not injective.
Counterexample:
Let \(A=\big{\{}\frac{a}{b}: b\ne 0,\text{and } gcd(a,b)=1 \big{\}}\) and \(B=\mathbb{Z}\).
Note \(\frac{1}{4}, \frac{1}{3} \in A\) and that \(f(\frac{1}{4}), f(\frac{1}{3}) \in B\) and that \(f(\frac{1}{4})=f(\frac{1}{3})=1\).
Since \(\frac{1}{4} \ne \frac{1}{3}\) , the function is not injective.
-
The function is not bijective since it has been shown not to be both injective and surjective.