Skip to main content
Mathematics LibreTexts

2.3: Arithmetic of inequality

  • Page ID
    7427
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Definition: Inequality

    Let \(a, b\in \mathbb{Z}\). Then

    1. \(a< b\) provided \(b=a + k\), for some \(k \in \mathbb{Z_+}\).
    2. \(a> b\) provided \(a=b + h\), for some \(h \in \mathbb{Z_+}\).

    Theorem \(\PageIndex{1}\)

    Let \(a, b\in \mathbb{Z}\).

    1. If \(a< b\) then \(a+c< b+c\), \( \forall c \in \mathbb{Z}\).
    2. If \(a< b\) then \(ac< bc\),\( \forall c \in \mathbb{Z_+}\).
    3. If \(a< b\) then \(ac> bc\),\( \forall c \in \mathbb{Z_-}\).
    4. If \(a< b\) and \(c< d\) then \(a+c< b+d\).
    Proof

    Let \(a, b, c \in \mathbb{Z}\) such that \(a <b\). Then \(b=a + k\), for some \(k \in \mathbb{Z_+}\).

    1. Now consider, \(b+c= (a+k)+c= (a+c)+k\), for some \(k \in \mathbb{Z_+}\). Thus \(a+c< b+c\).

    2.

    Example \(\PageIndex{1}\):

    Determine all integers \(m\) that satisfy \(-12m \geq 324\).

    Solution

    Since \(-12m \geq 324\), \( m \leq -\dfrac{324}{12}=-27\).

    Example \(\PageIndex{2}\):

    Determine all integers \(m\) that satisfy \(14m \geq 635\).

    Solution

    Since \(14m \geq 635\), \( m \geq \dfrac{635}{14}=45.35\). Thus the solutions are \( \{m\in \mathbb{Z}| m\geq 46\}.\)

    Example \(\PageIndex{3}\):

    Determine all integers \(k\) that satisfy \( -165+ 98k \geq 0, -335+199k \geq 0, -165+ 98k < 100 \) and \( -335+199k <100\).

    Solution

    Since \(-165 + 98k ≥ 0, k ≥ 1.68\).

    Since \(-335 + 199k ≥ 0, k ≥ 1.68\).

    Since \(-165 + 98k < 100, 98k < 265, \) and \( k < 2.70.\)

    Since \(-335 + 199k < 100, 199k < 435,\) and \( k < 2.18.\)

    Since \( 1.68 ≤ k < 2.18\) and \( k ∈ ℤ, k = 2. \)


    This page titled 2.3: Arithmetic of inequality is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.