Skip to main content
Mathematics LibreTexts

6.3: Fermat Primes, Mersenne Primes and Primes of the other forms

  • Page ID
    26366
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In this section, we consider special kinds of prime numbers.

    Fermat Primes and Mersenne Primes

    Definition:

    1. The prime numbers of the form \( 2^k+1\), where \(k\in \mathbb{Z_+}\), are called Fermat primes.

    2. The prime numbers of the form \( 2^k-1\), where \(k\in \mathbb{Z_+}\), are called Mersenne primes.

    They are named after the French mathematicians Fermat and Mersenne.

    Example \(\PageIndex{1}\):

    1. \( 2^1+1=3, 2^2+1=5,2^4+1=17\) are Fermat primes. Notice that \(2^3+1=9\) is not prime.

    2. \(2^2-1=3, 2^3-1=7, 2^5-1=31\) are Mersenne primes. Notice that \( 2^1-1=1, 2^4-1=15\) are not prime.

     

    Theorem \(\PageIndex{1}\)

    If \(2^k+1\) is a prime,\(k\in \mathbb{Z_+}\), then \(k\) is a power of \(2\).

    Proof

    Left as an exercise.

    Theorem \(\PageIndex{2}\)

    If \(2^k-1\) is a prime,\(k\in \mathbb{Z_+}\), then \(k\) is also a prime.

    Proof

    Left as an exercise.

    Primes of the form \(4k-1\)

    Example \(\PageIndex{2}\):

    \((4)(1)-1=3, (4)(2)-1=7, (4)(3)-1=11, 4(5)-1=19, (4)(6)-1=23\) are primes of the form \(4k-1\). Notice that \((4)(4)-1=15\) is not a prime.

    How many are there?

    Theorem \(\PageIndex{3}\)

    There are infinitely many primes of the form \(4k-1\), \(k\in \mathbb{Z_+}\).

    The proof of this theorem is beyond the scope of this class.

    Primes of the form \(6k-1\)

    Example \(\PageIndex{3}\):

    \((6)(1)-1=5, (6)(2)-1=11, (6)(3)-1=17, 6(5)-1=29\) are primes of the form \(6k-1\). Notice that \((6)(6)-1=35\) is not a prime.


    6.3: Fermat Primes, Mersenne Primes and Primes of the other forms is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?