# 7.3: Unusual Number systems

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## Dualtown Number System

The peoples of Dualtown use only numbers which are 1 and some of the multiples of 2 (even numbers). $$E=\{1, 2, 4, 6,8 \cdots\}$$. Notice that the set $$E$$ is closed under multiplication.

Let's construct a $$4 \times 4$$ multiplication table $$E$$.

 $$\times$$ $$1$$ $$2$$ $$4$$ $$6$$ $$1$$ $$1$$ $$2$$ $$4$$ $$6$$ $$2$$ $$2$$ $$4$$ $$8$$ $$12$$ $$4$$ $$4$$ $$8$$ $$16$$ $$24$$ $$6$$ $$6$$ $$12$$ $$24$$ $$36$$

The smallest ten prime numbers in Dualtown are $$2, 6, 10, 14, 18, 22, 26, 30, 34, 38$$. Notice that $$36=(6)(6)=(2)(18)$$. Thus $$36$$ has two different Dualtown prime factorizations. Hence the Prime Divisibility Theorem does not hold for the Dualtown number system.

This page titled 7.3: Unusual Number systems is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.