2.2E: Exercises
- Page ID
- 18546
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Trigonometric Integrals
Fill in the blank to make a true statement.
Exercise \(\PageIndex{1}\)
\(\sin^2x+\)_______\( =1\)
- Answer
-
\(\cos^2x\)
Exercise \(\PageIndex{2}\)
\(\sec^2x−1=\)_______
- Answer
-
\(\tan^2x\)
Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.
Exercise \(\PageIndex{3}\)
\(\sin^2x=\)_______
- Answer
-
\(\dfrac{1−\cos(2x)}{2}\)
Exercise \(\PageIndex{4}\)
\(\cos^2x=\)_______
- Answer
-
\(\dfrac{1+\cos(2x)}{2}\)
Evaluate each of the following integrals by \(u\)-substitution.
Exercise \(\PageIndex{5}\)
\(\displaystyle ∫\sin^3x\cos x\,dx\)
- Answer
-
\(\displaystyle ∫\sin^3x\cos x\,dx \quad = \quad \frac{\sin^4x}{4}+C\)
Exercise \(\PageIndex{6}\)
\(\displaystyle ∫\sqrt{\cos x}\sin x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{7}\)
\(\displaystyle ∫\tan^5(2x)\sec^2(2x)\,dx\)
- Answer
-
\(\displaystyle ∫\tan^5(2x)\sec^2(2x)\,dx \quad = \quad \tfrac{1}{12}\tan^6(2x)+C\)
Exercise \(\PageIndex{8}\)
\(\displaystyle ∫\sin^7(2x)\cos(2x)\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{9}\)
\(\displaystyle ∫\tan(\frac{x}{2})\sec^2(\frac{x}{2})\,dx\)
- Answer
-
\(\displaystyle ∫\tan(\frac{x}{2})\sec^2(\frac{x}{2})\,dx \quad = \quad \tan^2(\frac{x}{2})+C\)
Exercise \(\PageIndex{10}\)
\(\displaystyle ∫\tan^2x\sec^2x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)
Exercise \(\PageIndex{11}\)
\(\displaystyle ∫\sin^3x\,dx\)
- Answer
-
\(\displaystyle ∫\sin^3x\,dx \quad = \quad −\frac{3\cos x}{4}+\tfrac{1}{12}\cos(3x)+C=−\cos x+\frac{\cos^3x}{3}+C\)
Exercise \(\PageIndex{12}\)
\(\displaystyle ∫\cos^3x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{13}\)
\(\displaystyle ∫\sin x\cos x\,dx\)
- Answer
-
\(\displaystyle ∫\sin x\cos x\,dx \quad = \quad −\tfrac{1}{2}\cos^2x+C\)
Exercise \(\PageIndex{14}\)
\(\displaystyle ∫\cos^5x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{15}\)
\(\displaystyle ∫\sin^5x\cos^2x\,dx\)
- Answer
-
\(\displaystyle ∫\sin^5x\cos^2x\,dx \quad = \quad −\frac{5\cos x}{64}−\tfrac{1}{192}\cos(3x)+\tfrac{3}{320}\cos(5x)−\tfrac{1}{448}\cos(7x)+C\)
Exercise \(\PageIndex{16}\)
\(\displaystyle ∫\sin^3x\cos^3x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{17}\)
\(\displaystyle ∫\sqrt{\sin x}\cos x\,dx\)
- Answer
-
\(\displaystyle ∫\sqrt{\sin x}\cos x\,dx \quad = \quad \tfrac{2}{3}(\sin x)^{2/3}+C\)
Exercise \(\PageIndex{18}\)
\(\displaystyle ∫\sqrt{\sin x}\cos^3x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{19}\)
\(\displaystyle ∫\sec x\tan x\,dx\)
- Answer
-
\(\displaystyle ∫\sec x\tan x\,dx \quad = \quad \sec x+C\)
Exercise \(\PageIndex{20}\)
\(\displaystyle ∫\tan(5x)\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{21}\)
\(\displaystyle ∫\tan^2x\sec x\,dx\)
- Answer
-
\(\displaystyle ∫\tan^2x\sec x\,dx \quad = \quad \tfrac{1}{2}\sec x\tan x−\tfrac{1}{2}\ln(\sec x+\tan x)+C\)
Exercise \(\PageIndex{22}\)
\(\displaystyle ∫\tan x\sec^3x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{23}\)
\(\displaystyle ∫\sec^4x\,dx\)
- Answer
-
\(\displaystyle ∫\sec^4x\,dx \quad = \quad \frac{2\tan x}{3}+\tfrac{1}{3}\sec^2 x\tan x=\tan x+\frac{\tan^3x}{3}+C\)
Exercise \(\PageIndex{24}\)
\(\displaystyle ∫\cot x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{25}\)
\(\displaystyle ∫\csc x\,dx\)
- Answer
-
\(\displaystyle ∫\csc x\,dx \quad = \quad −\ln|\cot x+\csc x|+C\)
Exercise \(\PageIndex{26}\)
\(\displaystyle ∫\frac{\tan^3x}{\sqrt{\sec x}}\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
For exercises 27 - 28, find a general formula for the integrals.
Exercise \(\PageIndex{27}\)
\(\displaystyle ∫\sin^2ax\cos ax\,dx\)
- Answer
-
\(\displaystyle ∫\sin^2ax\cos ax\,dx \quad = \quad \frac{\sin^3(ax)}{3a}+C\)
Exercise \(\PageIndex{28}\)
\(\displaystyle ∫\sin ax\cos ax\,dx.\)
- Answer
-
Add texts here. Do not delete this text first.
Use the double-angle formulas to evaluate the integrals in exercises 29 - 34.
Exercise \(\PageIndex{29}\)
\(\displaystyle ∫^π_0\sin^2x\,dx\)
- Answer
-
\(\displaystyle ∫^π_0\sin^2x\,dx \quad = \quad \frac{π}{2}\)
Exercise \(\PageIndex{30}\)
\(\displaystyle ∫^π_0\sin^4 x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{31}\)
\(\displaystyle ∫\cos^2 3x\,dx\)
- Answer
-
\(\displaystyle ∫\cos^2 3x\,dx \quad = \quad \frac{x}{2}+\tfrac{1}{12}\sin(6x)+C\)
Exercise \(\PageIndex{32}\)
\(\displaystyle ∫\sin^2x\cos^2x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{33}\)
\(\displaystyle ∫\sin^2x\,dx+∫\cos^2x\,dx\)
- Answer
-
\(\displaystyle ∫\sin^2x\,dx+∫\cos^2x\,dx \quad = \quad x+C\)
Exercise \(\PageIndex{34}\)
\(\displaystyle ∫\sin^2 x\cos^2(2x)\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
For exercises 35 - 43, evaluate the definite integrals. Express answers in exact form whenever possible.
Exercise \(\PageIndex{35}\)
\(\displaystyle ∫^{2π}_0\cos x\sin 2x\,dx\)
- Answer
-
\(\displaystyle ∫^{2π}_0\cos x\sin 2x\,dx \quad = \quad 0\)
Exercise \(\PageIndex{36}\)
\(\displaystyle ∫^π_0\sin 3x\sin 5x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{37}\)
\(\displaystyle ∫^π_0\cos(99x)\sin(101x)\,dx\)
- Answer
-
\(\displaystyle ∫^π_0\cos(99x)\sin(101x)\,dx \quad = \quad 0\)
Exercise \(\PageIndex{38}\)
\(\displaystyle ∫^π_{−π}\cos^2(3x)\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{39}\)
\(\displaystyle ∫^{2π}_0\sin x\sin(2x)\sin(3x)\,dx\)
- Answer
-
\(\displaystyle ∫^{2π}_0\sin x\sin(2x)\sin(3x)\,dx \quad = \quad 0\)
Exercise \(\PageIndex{40}\)
\(\displaystyle ∫^{4π}_0\cos(x/2)\sin(x/2)\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{41}\)
\(\displaystyle ∫^{π/3}_{π/6}\frac{\cos^3x}{\sqrt{\sin x}}\,dx\) (Round this answer to three decimal places.)
- Answer
-
\(\displaystyle ∫^{π/3}_{π/6}\frac{\cos^3x}{\sqrt{\sin x}}\,dx \quad \approx \quad 0.239\)
Exercise \(\PageIndex{42}\)
\(\displaystyle ∫^{π/4}_{−π/4}\sqrt{\sec^2x−1}\,dx\)
- Answer
-
\( ln(2) \)
- Solution
-
\(\displaystyle ∫^{π/4}_{−π/4}\sqrt{\sec^2x−1}\,dx = \displaystyle ∫^{π/4}_{−π/4}\sqrt{\tan^2x}\,dx = \displaystyle ∫^{π/4}_{−π/4} |tan(x)| dx=- \displaystyle ∫^{0}_{−π/4} tan(x) dx + \displaystyle ∫^{π/4}_{0} tan(x) dx = ln(2).\)
Exercise \(\PageIndex{43}\)
\(\displaystyle ∫^{π/2}_0\sqrt{1−\cos(2x)}\,dx\)
- Answer
-
\(\displaystyle ∫^{π/2}_0\sqrt{1−\cos(2x)}\,dx \quad = \quad \sqrt{2}\)
Exercise \(\PageIndex{44}\)
Find the area of the region bounded by the graphs of the equations \(y=\sin x,\, y=\sin^3x,\, x=0,\) and \(x=\frac{π}{2}.\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{45}\)
Find the area of the region bounded by the graphs of the equations \(y=\cos^2x,\, y=\sin^2x,\, x=−\frac{π}{4},\) and \(x=\frac{π}{4}.\)
- Answer
-
\(A = 1 \,\text{unit}^2\)
Exercise \(\PageIndex{46}\)
A particle moves in a straight line with the velocity function \(v(t)=\sin(ωt)\cos^2(ωt).\) Find its position function \(x=f(t)\) if \( f(0)=0.\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{47}\)
Find the average value of the function \(f(x)=\sin^2x\cos^3x\) over the interval \([−π,π].\)
- Answer
-
\(0\)
For exercises 48 - 49, solve the differential equations.
Exercise \(\PageIndex{48}\)
\(\dfrac{dy}{\,dx}=\sin^2x.\) The curve passes through point \((0,0).\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{49}\)
\(\dfrac{dy}{dθ}=\sin^4(πθ)\)
- Answer
-
\(f(x) = \dfrac{3θ}{8}−\tfrac{1}{4π}\sin(2πθ)+\tfrac{1}{32π}\sin(4πθ)+C\)
Exercise \(\PageIndex{50}\)
Find the length of the curve \(y=\ln(\csc x),\, \text{for}\,\tfrac{π}{4}≤x≤\tfrac{π}{2}.\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{51}\)
Find the length of the curve \(y=\ln(\sin x),\, \text{for}\,\tfrac{π}{3}≤x≤\tfrac{π}{2}.\)
- Answer
-
\(s = \ln(\sqrt{3})\)
Exercise \(\PageIndex{52}\)
Find the volume generated by revolving the curve \(y=\cos(3x)\) about the \(x\)-axis, for \( 0≤x≤\tfrac{π}{36}.\)
- Answer
-
Add texts here. Do not delete this text first.
For exercises 53 - 54, use this information: The inner product of two functions \(f\) and \(g\) over \([a,b]\) is defined by \(\displaystyle f(x)⋅g(x)=⟨f,g⟩=∫^b_af⋅g\,dx.\) Two distinct functions \(f\) and \(g\) are said to be orthogonal if \(⟨f,g⟩=0.\)
Exercise \(\PageIndex{53}\)
Show that \({\sin(2x),\, \cos(3x)}\) are orthogonal over the interval \([−π,\, π]\).
- Answer
-
\(\displaystyle ∫^π_{−π}\sin(2x)\cos(3x)\,dx=0\)
Exercise \(\PageIndex{54}\)
Evaluate \(\displaystyle ∫^π_{−π}\sin(mx)\cos(nx)\,dx.\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{55}\)
Integrate \(y′=\sqrt{\tan x}\sec^4x.\)
- Answer
-
\(\displaystyle y = \int \sqrt{\tan x}\sec^4x \, dx \quad = \quad \tfrac{2}{3}\left(\tan x\right)^{3/2} + \tfrac{2}{7}\left(\tan x\right)^{7/2}+C= \tfrac{2}{21}\left(\tan x\right)^{3/2}\left[ 7 + 3\tan^2 x \right]+C\)
For each pair of integrals in exercises 56 - 57, determine which one is more difficult to evaluate. Explain your reasoning.
Exercise \(\PageIndex{56}\)
\(\displaystyle ∫\sin^{456}x\cos x\,dx\) or \(\displaystyle ∫\sin^2x\cos^2x\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{57}\)
\(\displaystyle ∫\tan^{350}x\sec^2x\,dx\) or \(\displaystyle ∫\tan^{350}x\sec x\,dx\)
- Answer
-
The second integral is more difficult because the first integral is simply a \(u\)-substitution type.