6.2E: Excercises
- Page ID
- 18597
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Calculus of Parametric Curves
Exercise \(\PageIndex{1}\)
For the following exercises, each set of parametric equations represents a line. Without eliminating the parameter, find the slope of each line.
1) \(\displaystyle x=3+t,y=1−t\)
2) \(\displaystyle x=8+2t,y=1\)
3) \(\displaystyle x=4−3t,y=−2+6t\)
4) \(\displaystyle x=−5t+7,y=3t−1\)
- Answer
-
Solution 2: 0,
Solution 4: \(\displaystyle \frac{−3}{5}\)
Exercise \(\PageIndex{2}\)
For the following exercises, determine the slope of the tangent line, then find the equation of the tangent line at the given value of the parameter.
5) \(\displaystyle x=3sint,y=3cost,t=\frac{π}{4}\)
6) \(\displaystyle x=cost,y=8sint,t=\frac{π}{2}\)
7) \(\displaystyle x=2t,y=t^3,t=−1\)
8) \(\displaystyle x=t+\frac{1}{t},y=t−\frac{1}{t},t=1\)
9) \(\displaystyle x=\sqrt{t},y=2t,t=4\)
- Answer
-
Solution 6: \(\displaystyle Slope=0; y=8.\),
Solution 8: Slope is undefined; \(\displaystyle x=2\).
Exercise \(\PageIndex{3}\)
For the following exercises, find all points on the curve that have the given slope.
10) \(\displaystyle x=4cost,y=4sint,\) slope = 0.5
11) \(\displaystyle x=2cost,y=8sint,slope=−1\)
12) \(\displaystyle x=t+\frac{1}{t},y=t−\frac{1}{t},slope=1\)
13) \(\displaystyle x=2+\sqrt{t},y=2−4t,slope=0\)
- Answer
-
Solution 10: \(\displaystyle t=arctan(−2); (\frac{4}{\sqrt{5}},\frac{−8}{\sqrt{5}})\),
Solution 12: No points possible; undefined expression.
Exercise \(\PageIndex{4}\)
For the following exercises, write the equation of the tangent line in Cartesian coordinates for the given parameter t.
14) \(\displaystyle x=e^{\sqrt{t}},y=1−lnt^2,t=1\)
15) \(\displaystyle x=tlnt,y=sin^2t,t=\frac{π}{4}\)
16) \(\displaystyle x=e^t,y=(t−1)^2,at(1,1)\)
17) For \(\displaystyle x=sin(2t),y=2sint\) where \(\displaystyle 0≤t<2π.\) Find all values of t at which a horizontal tangent line exists.
18) For \(\displaystyle x=sin(2t),y=2sint\) where \(\displaystyle 0≤t<2π\). Find all values of t at which a vertical tangent line exists.
19) Find all points on the curve \(\displaystyle x=4cos(t),y=4sin(t)\) that have the slope of \(\displaystyle \frac{1}{2}\).
20) Find \(\displaystyle \frac{dy}{dx}\) for \(\displaystyle x=sin(t),y=cos(t)\).
21) Find the equation of the tangent line to \(\displaystyle x=sin(t),y=cos(t)\) at \(\displaystyle t=\frac{π}{4}\).
22) For the curve \(\displaystyle x=4t,y=3t−2,\) find the slope and concavity of the curve at \(\displaystyle t=3\).
23) For the parametric curve whose equation is \(\displaystyle x=4cosθ,y=4sinθ\), find the slope and concavity of the curve at \(\displaystyle θ=\frac{π}{4}\).
24) Find the slope and concavity for the curve whose equation is \(\displaystyle x=2+secθ,y=1+2tanθ\) at \(\displaystyle θ=\frac{π}{6}\).
25) Find all points on the curve \(\displaystyle x=t+4,y=t^3−3t\) at which there are vertical and horizontal tangents.
26) Find all points on the curve \(\displaystyle x=secθ,y=tanθ\) at which horizontal and vertical tangents exist.
- Answer
-
Solution 14: \(\displaystyle y=−(\frac{2}{e})x+3\),
Solution 16: \(\displaystyle y=2x−7\),
Solution 18: \(\displaystyle \frac{π}{4},\frac{5π}{4},\frac{3π}{4},\frac{7π}{4}\),
Solution 20: \(\displaystyle \frac{dy}{dx}=−tan(t)\),
Solution 22: \(\displaystyle \frac{dy}{dx}=\frac{3}{4}\) and \(\displaystyle \frac{d^2y}{dx^2}=0\), so the curve is neither concave up nor concave down at \(\displaystyle t=3\). Therefore the graph is linear and has a constant slope but no concavity.
Solution 24: \(\displaystyle \frac{dy}{dx}=4,\frac{d^2y}{dx^2}=−6\sqrt{3};\) the curve is concave down at \(\displaystyle θ=\frac{π}{6}\).
Solution 26: No horizontal tangents. Vertical tangents at \(\displaystyle (1,0),(−1,0)\).
Exercise \(\PageIndex{5}\)
For the following exercises, find \(\displaystyle d^2y/dx^2\).
27) \(\displaystyle x=t^4−1,y=t−t^2\)
28) \(\displaystyle x=sin(πt),y=cos(πt)\)
29) \(\displaystyle x=e^{−t},y=te^{2t}\)
- Answer
-
Solution 28: \(\displaystyle −sec^3(πt)\)
Exercise \(\PageIndex{6}\)
For the following exercises, find points on the curve at which tangent line is horizontal or vertical.
30) \(\displaystyle x=t(t^2−3),y=3(t^2−3)\)
31) \(\displaystyle x=\frac{3t}{1+t^3},y=\frac{3t^2}{1+t^3}\)
- Answer
-
Solution 30: Horizontal \(\displaystyle (0,−9)\); vertical \(\displaystyle (±2,−6).\)
Exercise \(\PageIndex{7}\)
For the following exercises, find \(\displaystyle dy/dx\) at the value of the parameter.
32) \(\displaystyle x=cost,y=sint,t=\frac{3π}{4}\)
33) \(\displaystyle x=\sqrt{t},y=2t+4,t=9\)
34) \(\displaystyle x=4cos(2πs),y=3sin(2πs),s=−\frac{1}{4}\)
- Answer
-
Solution 32: 1,
Solution 34: 0
Exercise \(\PageIndex{8}\)
For the following exercises, find \(\displaystyle d^2y/dx^2\) at the given point without eliminating the parameter.
35) \(\displaystyle x=\frac{1}{2}t^2,y=\frac{1}{3}t^3,t=2\)
36) \(\displaystyle x=\sqrt{t},y=2t+4,t=1\)
37) Find t intervals on which the curve \(\displaystyle x=3t^2,y=t^3−t\) is concave up as well as concave down.
38) Determine the concavity of the curve \(\displaystyle x=2t+lnt,y=2t−lnt\).
39) Sketch and find the area under one arch of the cycloid \(\displaystyle x=r(θ−sinθ),y=r(1−cosθ)\).
40) Find the area bounded by the curve \(\displaystyle x=cost,y=e^t,0≤t≤\frac{π}{2}\) and the lines \(\displaystyle y=1\) and \(\displaystyle x=0\).
41) Find the area enclosed by the ellipse \(\displaystyle x=acosθ,y=bsinθ,0≤θ<2π.\)
42) Find the area of the region bounded by \(\displaystyle x=2sin^2θ,y=2sin^2θtanθ\), for \(\displaystyle 0≤θ≤\frac{π}{2}\).
- Answer
-
Solution 36: 4,
Solution 38: Concave up on \(\displaystyle t>0\),
Solution 40: 1,
Solution 42: \(\displaystyle \frac{3π}{2}\)
Exercise \(\PageIndex{9}\)
For the following exercises, find the area of the regions bounded by the parametric curves and the indicated values of the parameter.
43) \(\displaystyle x=2cotθ,y=2sin^2θ,0≤θ≤π\)
44) [T] \(\displaystyle x=2acost−acos(2t),y=2asint−asin(2t),0≤t<2π\)
45) [T] \(\displaystyle x=asin(2t),y=bsin(t),0≤t<2π\) (the “hourglass”)
46) [T] \(\displaystyle x=2acost−asin(2t),y=bsint,0≤t<2π\) (the “teardrop”)
- Answer
-
Solution 44: \(\displaystyle 6πa^2\),
Solution 46: \(\displaystyle 2πab\)
Exercise \(\PageIndex{10}\)
For the following exercises, find the arc length of the curve on the indicated interval of the parameter.
47) \(\displaystyle x=4t+3,y=3t−2,0≤t≤2\)
48) \(\displaystyle x=\frac{1}{3}t^3,y=\frac{1}{2}t^2,0≤t≤1\)
49) \(\displaystyle x=cos(2t),y=sin(2t),0≤t≤\frac{π}{2}\)
50) \(\displaystyle x=1+t^2,y=(1+t)^3,0≤t≤1\)
51) \(\displaystyle x=e^tcost,y=e^tsint,0≤t≤\frac{π}{2}\) (express answer as a decimal rounded to three places)
52) \(\displaystyle x=acos^3θ,y=asin^3θ\) on the interval \(\displaystyle [0,2π)\) (the hypocycloid)
53) Find the length of one arch of the cycloid \(\displaystyle x=4(t−sint),y=4(1−cost).\)
54) Find the distance traveled by a particle with position \(\displaystyle (x,y)\) as t varies in the given time interval: \(\displaystyle x=sin^2t,y=cos^2t,0≤t≤3π\).
55) Find the length of one arch of the cycloid \(\displaystyle x=θ−sinθ,y=1−cosθ\).
56) Show that the total length of the ellipse \(\displaystyle x=4sinθ,y=3cosθ\) is \(\displaystyle L=16∫^{π/2}_0\sqrt{1−e^2sin^2θ}dθ\), where \(\displaystyle e=\frac{c}{a}\) and \(\displaystyle c=\sqrt{a^2−b^2}\).
57) Find the length of the curve \(\displaystyle x=e^t−t,y=4e^{t/2},−8≤t≤3.\)
- Answer
-
Soluton 48: \(\displaystyle \frac{1}{3}(2\sqrt{2}−1)\),
Solution 50: 7.075,
Solution 52: \(\displaystyle 6a\),
Solution 54: \(\displaystyle 6\sqrt{2}\)
Exercise \(\PageIndex{11}\)
For the following exercises, find the area of the surface obtained by rotating the given curve about the x-axis.
58) \(\displaystyle x=t^3,y=t^2,0≤t≤1\)
59) \(\displaystyle x=acos^3θ,y=asin^3θ,0≤θ≤\frac{π}{2}\)
60) [T] Use a CAS to find the area of the surface generated by rotating \(\displaystyle x=t+t^3,y=t−\frac{1}{t^2},1≤t≤2\) about the x-axis. (Answer to three decimal places.)
61) Find the surface area obtained by rotating \(\displaystyle x=3t^2,y=2t^3,0≤t≤5\) about the y-axis.
62) Find the area of the surface generated by revolving \(\displaystyle x=t^2,y=2t,0≤t≤4\) about the x-axis.
63) Find the surface area generated by revolving \(\displaystyle x=t^2,y=2t^2,0≤t≤1\) about the y-axis.
- Answer
-
Solution 58: \(\displaystyle \frac{2π(247\sqrt{13}+64)}{1215}\),
Solution 60: 59.101,
Solution 62: \(\displaystyle \frac{8π}{3}(17\sqrt{17}−1)\)