6.4E: Excercises
- Page ID
- 18599
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Area and Arc Length in Polar Coordinates
Answered to even-numbered problems provided.
Exercise \(\PageIndex{1}\)
For the following exercises, determine a definite integral that represents the area.
1) Region enclosed by \(\displaystyle r=4\)
2) Region enclosed by \(\displaystyle r=3sinθ\)
3) Region in the first quadrant within the cardioid \(\displaystyle r=1+sinθ\)
4) Region enclosed by one petal of \(\displaystyle r=8sin(2θ)\)
5) Region enclosed by one petal of \(\displaystyle r=cos(3θ)\)
6) Region below the polar axis and enclosed by \(\displaystyle r=1−sinθ\)
7) Region in the first quadrant enclosed by \(\displaystyle r=2−cosθ\)
8) Region enclosed by the inner loop of \(\displaystyle r=2−3sinθ\)
9) Region enclosed by the inner loop of \(\displaystyle r=3−4cosθ\)
10) Region enclosed by \(\displaystyle r=1−2cosθ\) and outside the inner loop
11) Region common to \(\displaystyle r=3sinθ\) and \(\displaystyle r=2−sinθ\)
12) Region common to \(\displaystyle r=2\) and \(\displaystyle r=4cosθ\)
13) Region common to \(\displaystyle r=3cosθ\) and \(\displaystyle r=3sinθ\)
- Answer
-
Solution 2: \(\displaystyle \frac{9}{2}∫^π_0sin^2θdθ\),
Solution 4: \(\displaystyle \frac{3}{2}∫^{π/2}_0sin^2(2θ)dθ\),
Solution 6: \(\displaystyle \frac{1}{2}∫^{2π}_π(1−sinθ)^2dθ\),
Solution 8: \(\displaystyle ∫^{π/2}_{sin^{−1}(2/3)}(2−3sinθ)^2dθ\),
Solution 10: \(\displaystyle ∫^π_0(1−2cosθ)^2dθ−∫^{π/3}_0(1−2cosθ)^2dθ\),
Solution 12: \(\displaystyle 4∫^{π/3}_0dθ+16∫^{π/2}_{π/3}(cos^2θ)dθ\)
Exercise \(\PageIndex{2}\)
For the following exercises, find the area of the described region.
14) Enclosed by \(\displaystyle r=6sinθ\)
15) Above the polar axis enclosed by \(\displaystyle r=2+sinθ\)
16) Below the polar axis and enclosed by \(\displaystyle r=2−cosθ\)
17) Enclosed by one petal of \(\displaystyle r=4cos(3θ)\)
18) Enclosed by one petal of \(\displaystyle r=3cos(2θ)\)
19) Enclosed by \(\displaystyle r=1+sinθ\)
20) Enclosed by the inner loop of \(\displaystyle r=3+6cosθ\)
21) Enclosed by \(\displaystyle r=2+4cosθ\) and outside the inner loop
22) Common interior of \(\displaystyle r=4sin(2θ)\) and \(\displaystyle r=2\)
23) Common interior of \(\displaystyle r=3−2sinθ\) and \(\displaystyle r=−3+2sinθ\)
24) Common interior of \(\displaystyle r=6sinθ\) and \(\displaystyle r=3\)
25) Inside \(\displaystyle r=1+cosθ\) and outside \(\displaystyle r=cosθ\)
26) Common interior of \(\displaystyle r=2+2cosθ\) and \(\displaystyle r=2sinθ\)
- Answer
-
Solution 14: \(\displaystyle 9π\),
Solution 16: \(\displaystyle \frac{9π}{4}\),
Solution 18: \(\displaystyle \frac{9π}{8}\),
Solution 20: \(\displaystyle \frac{18π−27\sqrt{3}}{2}\),
Solution 22: \(\displaystyle \frac{4}{3}(4π−3\sqrt{3})\),
Solution 24: \(\displaystyle 32(4π−33√),
Solution 26: \(\displaystyle 2π−4\)
Exercise \(\PageIndex{3}\)
For the following exercises, find a definite integral that represents the arc length.
27) \(\displaystyle r=4cosθ\) on the interval \(\displaystyle 0≤θ≤\frac{π}{2}\)
28) \(\displaystyle r=1+sinθ\) on the interval \(\displaystyle 0≤θ≤2π\)
29) \(\displaystyle r=2secθ\) on the interval \(\displaystyle 0≤θ≤\frac{π}{3}\)
30) \(\displaystyle r=e^θ\) on the interval \(\displaystyle 0≤θ≤1\)
- Answer
-
Solution 28: \(\displaystyle ∫^{2π}_0\sqrt{(1+sinθ)^2+cos^2θ}dθ\),
Solution 30: \(\displaystyle \sqrt{2}∫^1_0e^θdθ\)
Exercise \(\PageIndex{4}\)
For the following exercises, find the length of the curve over the given interval.
31) \(\displaystyle r=6\) on the interval \(\displaystyle 0≤θ≤\frac{π}{2}\)
32) \(\displaystyle r=e^{3θ}\) on the interval \(\displaystyle 0≤θ≤2\)
33) \(\displaystyle r=6cosθ\) on the interval \(\displaystyle 0≤θ≤\frac{π}{2}\)
34) \(\displaystyle r=8+8cosθ\) on the interval \(\displaystyle 0≤θ≤π\)
35) \(\displaystyle r=1−sinθ\) on the interval \(\displaystyle 0≤θ≤2π\)
- Answer
-
Solution 32: \(\displaystyle \frac{\sqrt{10}}{3}(e^6−1)\),
Solution 34: 32
Exercise \(\PageIndex{5}\)
For the following exercises, use the integration capabilities of a calculator to approximate the length of the curve.
36) [T] \(\displaystyle r=3θ\) on the interval \(\displaystyle 0≤θ≤\frac{π}{2}\)
37) [T] \(\displaystyle r=\frac{2}{θ}\) on the interval \(\displaystyle π≤θ≤2π\)
38) [T] \(\displaystyle r=sin^2(\frac{θ}{2})\) on the interval \(\displaystyle 0≤θ≤π\)
39) [T] \(\displaystyle r=2θ^2\) on the interval \(\displaystyle 0≤θ≤π\)
40) [T] \(\displaystyle r=sin(3cosθ)\) on the interval \(\displaystyle 0≤θ≤π\)
- Answer
-
Solution 36: 6.238, Solution 38: 2, Solution 40: 4.39
Exercise \(\PageIndex{6}\)
For the following exercises, use the familiar formula from geometry to find the area of the region described and then confirm by using the definite integral.
41) \(\displaystyle r=3sinθ\) on the interval \(\displaystyle 0≤θ≤π\)
42) \(\displaystyle r=sinθ+cosθ\) on the interval \(\displaystyle 0≤θ≤π\)
43) \(\displaystyle r=6sinθ+8cosθ\) on the interval \(\displaystyle 0≤θ≤π\)
- Answer
-
Solution 42: \(\displaystyle A=π(\frac{\sqrt{2}}{2})^2=\frac{π}{2}\) and \(\displaystyle \frac{1}{2}∫^π_0(1+2sinθcosθ)dθ=\frac{π}{2}\)
Exercise \(\PageIndex{7}\)
For the following exercises, use the familiar formula from geometry to find the length of the curve and then confirm using the definite integral.
44) \(\displaystyle r=3sinθ\) on the interval \(\displaystyle 0≤θ≤π\)
45) \(\displaystyle r=sinθ+cosθ\) on the interval \(\displaystyle 0≤θ≤π\)
46) \(\displaystyle r=6sinθ+8cosθ\) on the interval \(\displaystyle 0≤θ≤π\)
47) Verify that if \(\displaystyle y=rsinθ=f(θ)sinθ\) then \(\displaystyle \frac{dy}{dθ}=f'(θ)sinθ+f(θ)cosθ.\)
- Answer
-
Solution 44: \(\displaystyle C=2π(\frac{3}{2})=3π\) and \(\displaystyle ∫^π_03dθ=3π\), Solution 46: \(\displaystyle C=2π(5)=10π\) and \(\displaystyle ∫^π_010dθ=10π\)
Exercise \(\PageIndex{8}\)
For the following exercises, find the slope of a tangent line to a polar curve \(\displaystyle r=f(θ)\). Let \(\displaystyle x=rcosθ=f(θ)cosθ\) and \(\displaystyle y=rsinθ=f(θ)sinθ\), so the polar equation \(\displaystyle r=f(θ)\) is now written in parametric form.
48) Use the definition of the derivative \(\displaystyle dydx=\frac{dy/dθ}{dx/dθ}\) and the product rule to derive the derivative of a polar equation.
49) \(\displaystyle r=1−sinθ; (\frac{1}{2},\frac{π}{6})\)
50) \(\displaystyle r=4cosθ; (2,\frac{π}{3})\)
51) \(\displaystyle r=8sinθ; (4,\frac{5π}{6})\)
52) \(\displaystyle r=4+sinθ; (3,\frac{3π}{2})\)
53) \(\displaystyle r=6+3cosθ; (3,π)\)
54) \(\displaystyle r=4cos(2θ);\) tips of the leaves
55) \(\displaystyle r=2sin(3θ);\) tips of the leaves
56) \(\displaystyle r=2θ; (\frac{π}{2},\frac{π}{4})\)
57) Find the points on the interval \(\displaystyle −π≤θ≤π\) at which the cardioid \(\displaystyle r=1−cosθ\) has a vertical or horizontal tangent line.
58) For the cardioid \(\displaystyle r=1+sinθ,\) find the slope of the tangent line when \(\displaystyle θ=\frac{π}{3}\).
- Answer
-
Solution 48: \(\displaystyle \frac{dy}{dx}=\frac{f′(θ)sinθ+f(θ)cosθ}{f′(θ)cosθ−f(θ)sinθ}\),
Solution 50: The slope is \(\displaystyle \frac{1}{\sqrt{3}}\),
Solution 52: The slope is 0,
Solution 54: At \(\displaystyle (4,0),\) the slope is undefined. At \(\displaystyle (−4,\frac{π}{2})\), the slope is 0,
Solution 56: The slope is undefined at \(\displaystyle θ=\frac{π}{4}\),
Solution: Slope = −1.
Exercise \(\PageIndex{9}\)
For the following exercises, find the slope of the tangent line to the given polar curve at the point given by the value of \(\displaystyle θ\).
59) \(\displaystyle r=3cosθ,θ=\frac{π}{3}\)
60) \(\displaystyle r=θ, θ=\frac{π}{2}\)
61) \(\displaystyle r=lnθ, θ=e\)
62) [T] Use technology: \(\displaystyle r=2+4cosθ\) at \(\displaystyle θ=\frac{π}{6}\)
Solution: Calculator answer: −0.836.
- Answer
-
Soltuion 60: Slope is \(\displaystyle \frac{−2}{π}\), Solution 62: Calculator answer: −0.836.
Exercise \(\PageIndex{10}\)
For the following exercises, find the points at which the following polar curves have a horizontal or vertical tangent line.
63) \(\displaystyle r=4cosθ\)
64) \(\displaystyle r^2=4cos(2θ)\)
65) \(\displaystyle r=2sin(2θ)\)
66) The cardioid \(\displaystyle r=1+sinθ\)
67) Show that the curve \(\displaystyle r=sinθtanθ\) (called a cissoid of Diocles) has the line \(\displaystyle x=1\) as a vertical asymptote.
- Answer
-
Solution 64: Horizontal tangent at \(\displaystyle (±\sqrt{2},\frac{π}{6}), (±\sqrt{2},−\frac{π}{6})\),
Solution 66: Horizontal tangents at \(\displaystyle \frac{π}{2},\frac{7π}{6},\frac{11π}{6}.\) Vertical tangents at \(\displaystyle \frac{π}{6},\frac{5π}{6}\) and also at the pole \(\displaystyle (0,0)\).