Skip to main content
Mathematics LibreTexts

5.5E: Excersies

  • Page ID
    25932
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    In the following exercises, points \(\displaystyle P\) and \(\displaystyle Q\) are given. Let \(\displaystyle L\) be the line passing through points \(\displaystyle P\) and \(\displaystyle Q\).

    a. Find the vector equation of line \(\displaystyle L\).

    b. Find parametric equations of line \(\displaystyle L\).

    c. Find symmetric equations of line \(\displaystyle L\).

    d. Find parametric equations of the line segment determined by \(\displaystyle P\) and \(\displaystyle Q\).

    1) \(\displaystyle P(−3,5,9), Q(4,−7,2)\)

    Answer

    \(\displaystyle a. r=⟨−3,5,9⟩+t⟨7,−12,−7⟩, t∈R; b. x=−3+7t,y=5−12t,z=9−7t, t∈R; c. \frac{x+3}{7}=\frac{y−5}{−12}=\frac{z−9}{−7}; d. x=−3+7t,y=5−12t,z=9−7t, t∈[0,1]\)

    2) \(\displaystyle P(4,0,5),Q(2,3,1)\)

    3) \(\displaystyle P(−1,0,5), Q(4,0,3)\)

    Answer

    \(\displaystyle a. r=⟨−1,0,5⟩+t⟨5,0,−2⟩, t∈R; b. x=−1+5t,y=0,z=5−2t, t∈R; c. \frac{x+1}{5}=\frac{z−5}{−2},y=0; d. x=−1+5t,y=0,z=5−2t, t∈[0,1]\)

    4) \(\displaystyle P(7,−2,6), Q(−3,0,6)\)

    Exercise \(\PageIndex{2}\)

    For the following exercises, point \(\displaystyle P\) and vector \(\displaystyle v\) are given. Let \(\displaystyle L\) be the line passing through point \(\displaystyle P\) with direction \(\displaystyle v\).

    a. Find parametric equations of line \(\displaystyle L\).

    b. Find symmetric equations of line \(\displaystyle L\).

    c. Find the intersection of the line with the xy-plane.

    5) \(\displaystyle P(1,−2,3), v=⟨1,2,3⟩\)

    Answer

    \(\displaystyle a. x=1+t,y=−2+2t,z=3+3t, t∈R; b. \frac{x−1}{1}=\frac{y+2}{2}=\frac{z−3}{3}; c. (0,−4,0)\)

    6) \(\displaystyle P(3,1,5), v=⟨1,1,1⟩\)

    7) \(\displaystyle P(3,1,5), v=\vec{QR},\) where \(\displaystyle Q(2,2,3)\) and \(\displaystyle R(3,2,3)\)

    Answer

    \(\displaystyle a. x=3+t,y=1,z=5, t∈R; b. y=1,z=5;\) c. The line does not intersect the xy-plane.

    8) \(\displaystyle P(2,3,0), v=\vec{QR},\) where \(\displaystyle Q(0,4,5)\) and \(\displaystyle R(0,4,6)\)

    Exercise \(\PageIndex{3}\)

    For the following exercises, line \(\displaystyle L\) is given.

    a. Find point \(\displaystyle P\) that belongs to the line and direction vector \(\displaystyle v\) of the line. Express \(\displaystyle v\) in component form.

    b. Find the distance from the origin to line \(\displaystyle L\).

    9) \(\displaystyle x=1+t,y=3+t,z=5+4t, t∈R\)

    Answer

    \(\displaystyle a. P(1,3,5), v=⟨1,1,4⟩; b. \sqrt{3}\)

    10) \(\displaystyle −x=y+1,z=2\)

    Find the distance between point \(\displaystyle A(−3,1,1)\) and the line of symmetric equations

    11) \(\displaystyle x=−y=−z.\)

    Answer

    \(\displaystyle \frac{2\sqrt{2}}{\sqrt{3}}\)

    Find the distance between point \(\displaystyle A(4,2,5)\) and the line of parametric equations

    12) \(\displaystyle x=−1−t,y=−t,z=2, t∈R.\)

    Exercise \(\PageIndex{4}\)

    For the following exercises, lines \(\displaystyle L_1\) and \(\displaystyle L_2\) are given.

    a. Verify whether lines \(\displaystyle L_1\) and \(\displaystyle L_2\) are parallel.

    b. If the lines \(\displaystyle L_1\) and \(\displaystyle L_2\) are parallel, then find the distance between them.

    13) \(\displaystyle L_1:x=1+t,y=t,z=2+t, t∈R, L_2:x−3=y−1=z−3\)

    Answer

    a. Parallel; b. \(\displaystyle \frac{\sqrt{2}}{\sqrt{3}}\)

    14) \(\displaystyle L_1:x=2,y=1,z=t, L_2:x=1,y=1,z=2−3t, t∈R\)

    15) Show that the line passing through points \(\displaystyle P(3,1,0)\) and \(\displaystyle Q(1,4,−3)\) is perpendicular to the line with equation \(\displaystyle x=3t,y=3+8t,z=−7+6t, t∈R.\)

    16) Are the lines of equations \(\displaystyle x=−2+2t,y=−6,z=2+6t\) and \(\displaystyle x=−1+t,y=1+t,z=t, t∈R,\) perpendicular to each other?

    17) Find the point of intersection of the lines of equations \(\displaystyle x=−2y=3z\) and \(\displaystyle x=−5−t,y=−1+t,z=t−11, t∈R.\)

    Answer

    \(\displaystyle (−12,6,−4)\)

    18) Find the intersection point of the x-axis with the line of parametric equations \(\displaystyle x=10+t,y=2−2t,z=−3+3t,

    t∈R.\)

    Exercise \(\PageIndex{5}\)

    For the following exercises, lines \(\displaystyle L_1\) and \(\displaystyle L_2\) are given. Determine whether the lines are equal, parallel but not equal, skew, or intersecting.

    19) \(\displaystyle L_1:x=y−1=−z\) and \(\displaystyle L_2:x−2=−y=\frac{z}{2}\)

    Answer

    The lines are skew.

    20) \(\displaystyle L_1:x=2t,y=0,z=3, t∈R\) and \(\displaystyle L_2:x=0,y=8+s,z=7+s, s∈R\)

    21) \(\displaystyle L_1:x=−1+2t,y=1+3t,z=7t, t∈R\) and \(\displaystyle L_2:x−1=\frac{2}{3}(y−4)=\frac{2}{7}z−2\)

    Answer

    The lines are equal.

    22) \(\displaystyle L_1:3x=y+1=2z\) and \(\displaystyle L_2:x=6+2t,y=17+6t,z=9+3t, t∈R\)

    Exercise \(\PageIndex{6}\)

    23) Consider line \(\displaystyle L\) of symmetric equations \(\displaystyle x−2=−y=\frac{z}{2}\) and point \(\displaystyle A(1,1,1).\)

    a. Find parametric equations for a line parallel to \(\displaystyle L\) that passes through point \(\displaystyle A\).

    b. Find symmetric equations of a line skew to \(\displaystyle L\) and that passes through point \(\displaystyle A\).

    c. Find symmetric equations of a line that intersects \(\displaystyle L\) and passes through point \(\displaystyle A\).

    Answer

    \(\displaystyle a. x=1+t,y=1−t,z=1+2t, t∈R;\) b. For instance, the line passing through \(\displaystyle A\) with direction vector \(\displaystyle j:x=1,z=1;\) c. For instance, the line passing through \(\displaystyle A\) and point \(\displaystyle (2,0,0)\) that belongs to \(\displaystyle L\) is a line that intersects; \(\displaystyle L:\frac{x−1}{−1}=y−1=z−1\)

    24) Consider line \(\displaystyle L\) of parametric equations \(\displaystyle x=t,y=2t,z=3, t∈R.\)

    a. Find parametric equations for a line parallel to \(\displaystyle L\) that passes through the origin.

    b. Find parametric equations of a line skew to \(\displaystyle L\) that passes through the origin.

    c. Find symmetric equations of a line that intersects \(\displaystyle L\) and passes through the origin.

    Exercise \(\PageIndex{7}\)

    For the following exercises, point \(\displaystyle P\) and vector \(\displaystyle n\) are given.

    a. Find the scalar equation of the plane that passes through \(\displaystyle P\) and has normal vector \(\displaystyle n\).

    b. Find the general form of the equation of the plane that passes through \(\displaystyle P\) and has normal vector \(\displaystyle n\).

    25) \(\displaystyle P(0,0,0), n=3i−2j+4k\)

    Answer

    \(\displaystyle a. 3x−2y+4z=0; b. 3x−2y+4z=0\)

    26) \(\displaystyle P(3,2,2), n=2i+3j−k\)

    27) \(\displaystyle P(1,2,3), n=⟨1,2,3⟩\)

    Answer

    \(\displaystyle a. (x−1)+2(y−2)+3(z−3)=0; b. x+2y+3z−14=0\)

    28) \(\displaystyle P(0,0,0), n=⟨−3,2,−1⟩\)

    Exercise \(\PageIndex{8}\)

    For the following exercises, the equation of a plane is given.

    a. Find normal vector \(\displaystyle n\) to the plane. Express \(\displaystyle n\) using standard unit vectors.

    b. Find the intersections of the plane with the axes of coordinates.

    c. Sketch the plane.

    29) [T] \(\displaystyle 4x+5y+10z−20=0\)

    Answer

    \(\displaystyle a. n=4i+5j+10k; b. (5,0,0), (0,4,0),\) and \(\displaystyle (0,0,2);\)

    c.

    This figure is the first octant of the 3-dimensional coordinate system. It has a triangle drawn with vertices on the x, y, and z axes.

    30) \(\displaystyle 3x+4y−12=0\)

    31) \(\displaystyle 3x−2y+4z=0\)

    Answer

    \(\displaystyle a. n=3i−2j+4k; b. (0,0,0);\)

    c.

    This figure is the 3-dimensional coordinate system represented in a box. It has a tilted parallelogram inside the box representing a plane.

    32) \(\displaystyle x+z=0\)

    33) Given point \(\displaystyle P(1,2,3)\) and vector \(\displaystyle n=i+j\), find point \(\displaystyle Q\) on the x-axis such that \(\displaystyle \vec{PQ}\) and \(\displaystyle n\) are orthogonal.

    Answer

    \(\displaystyle (3,0,0)\)

    Exercise \(\PageIndex{9}\)

    34) Show there is no plane perpendicular to \(\displaystyle n=i+j\) that passes through points \(\displaystyle P(1,2,3)\) and \(\displaystyle Q(2,3,4)\).

    35) Find parametric equations of the line passing through point \(\displaystyle P(−2,1,3)\) that is perpendicular to the plane of equation \(\displaystyle 2x−3y+z=7.\)

    Answer

    \(\displaystyle x=−2+2t,y=1−3t,z=3+t, t∈R\)

    36) Find symmetric equations of the line passing through point \(\displaystyle P(2,5,4)\) that is perpendicular to the plane of equation \(\displaystyle 2x+3y−5z=0.\)

    37) Show that line \(\displaystyle \frac{x−1}{2}=\frac{y+1}{3}=\frac{z−2}{4}\) is parallel to plane \(\displaystyle x−2y+z=6\).

    38) Find the real number \(\displaystyle α\) such that the line of parametric equations \(\displaystyle x=t,y=2−t,z=3+t, t∈R\) is parallel to the plane of equation \(\displaystyle αx+5y+z−10=0.\)

    Exercise \(\PageIndex{10}\)

    For the following exercises, the equations of two planes are given.

    a. Determine whether the planes are parallel, orthogonal, or neither.

    b. If the planes are neither parallel nor orthogonal, then find the measure of the angle between the planes. Express the answer in degrees rounded to the nearest integer.

    39) [T] \(\displaystyle x+y+z=0, 2x−y+z−7=0\)

    Answer

    a. The planes are neither parallel nor orthogonal; b. \(\displaystyle 62°\)

    40) \(\displaystyle 5x−3y+z=4, x+4y+7z=1\)

    41) \(\displaystyle x−5y−z=1, 5x−25y−5z=−3\)

    Answer

    a. The planes are parallel.

    42) [T] \(\displaystyle x−3y+6z=4, 5x+y−z=4\)

    Exercise \(\PageIndex{11}\)

    43) Show that the lines of equations \(\displaystyle x=t,y=1+t,z=2+t, t∈R,\) and \(\displaystyle \frac{x}{2}=\frac{y−1}{3}=z−3\) are skew, and find the distance between them.

    Answer

    \(\displaystyle \frac{1}{\sqrt{6}}\)

    44) Show that the lines of equations \(\displaystyle x=−1+t,y=−2+t,z=3t, t∈R,\) and \(\displaystyle x=5+s,y=−8+2s,z=7s, s∈R\) are skew, and find the distance between them.

    Exercise \(\PageIndex{12}\)

    45) Consider point \(\displaystyle C(−3,2,4)\) and the plane of equation \(\displaystyle 2x+4y−3z=8\).

    a. Find the radius of the sphere with center \(\displaystyle C\) tangent to the given plane.

    b. Find point P of tangency.

    Answer

    \(\displaystyle a. \frac{18}{\sqrt{29}}; b. P(−\frac{51}{29},\frac{130}{29},\frac{62}{29})\)

    46) Consider the plane of equation \(\displaystyle x−y−z−8=0.\)

    a. Find the equation of the sphere with center \(\displaystyle C\) at the origin that is tangent to the given plane.

    b. Find parametric equations of the line passing through the origin and the point of tangency.

    Exercise \(\PageIndex{13}\)

    47) Two children are playing with a ball. The girl throws the ball to the boy. The ball travels in the air, curves \(\displaystyle 3\) ft to the right, and falls \(\displaystyle 5\) ft away from the girl (see the following figure). If the plane that contains the trajectory of the ball is perpendicular to the ground, find its equation.

    This figure is the image of two children throwing a ball. The path of the ball is represented with an arc. The distance from the child throwing the ball to the point where the ball hits is 5 feet. The distance from the second child to where the ball hits is 3 feet.

    Answer

    \(\displaystyle 4x−3y=0\)

    48) [T] John allocates \(\displaystyle d\) dollars to consume monthly three goods of prices \(\displaystyle a,b\), and \(\displaystyle c\). In this context, the budget equation is defined as \(\displaystyle ax+by+cz=d,\) where \(\displaystyle x≥0,y≥0\), and \(\displaystyle z≥0\) represent the number of items bought from each of the goods. The budget set is given by \(\displaystyle {(x,y,z)|ax+by+cz≤d,x≥0,y≥0,z≥0},\) and the budget plane is the part of the plane of equation \(\displaystyle ax+by+cz=d\) for which \(\displaystyle x≥0,y≥0\), and \(\displaystyle z≥0\). Consider \(\displaystyle a=$8, b=$5, c=$10,\) and \(\displaystyle d=$500.\)

    a. Use a CAS to graph the budget set and budget plane.

    b. For \(\displaystyle z=25,\) find the new budget equation and graph the budget set in the same system of coordinates.

    49) [T] Consider \(\displaystyle r(t)=⟨sint,cost,2t⟩\) the position vector of a particle at time \(\displaystyle t∈[0,3]\), where the components of \(\displaystyle r\) are expressed in centimeters and time is measured in seconds. Let \(\displaystyle \vec{OP}\) be the position vector of the particle after \(\displaystyle 1\) sec.

    a. Determine the velocity vector \(\displaystyle v(1)\) of the particle after \(\displaystyle 1\) sec.

    b. Find the scalar equation of the plane that is perpendicular to \(\displaystyle v(1)\) and passes through point \(\displaystyle P\). This plane is called the normal plane to the path of the particle at point \(\displaystyle P\).

    c. Use a CAS to visualize the path of the particle along with the velocity vector and normal plane at point \(\displaystyle P\).

    Answer

    \(\displaystyle a. v(1)=⟨cos1,−sin1,2⟩; b. (cos1)(x−sin1)−(sin1)(y−cos1)+2(z−2)=0;\)

    c.

    This figure is the first octant of the 3-dimensional coordinate system. It has a parallelogram grid drawn representing a plane. There is a curve from y = 1 increasing. The curve intersects the plane. At the point the curve intersects the plane, there is a vector labeled “v(1).” It is upward parallel to the z-axis.

    50) [T] A solar panel is mounted on the roof of a house. The panel may be regarded as positioned at the points of coordinates (in meters) \(\displaystyle A(8,0,0), B(8,18,0), C(0,18,8),\) and \(\displaystyle D(0,0,8)\) (see the following figure).

    This figure is a picture of a rectangular solar grid on a roof. The corners of the rectangle are labeled A, B, C, D. There are two vectors, the first is from A to D. The second is from A to B.

    a. Find the general form of the equation of the plane that contains the solar panel by using points \(\displaystyle A,B,\) and \(\displaystyle C\), and show that its normal vector is equivalent to \(\displaystyle \vec{AB}×\vec{AD}.\)

    b. Find parametric equations of line \(\displaystyle L_1\) that passes through the center of the solar panel and has direction vector \(\displaystyle s=\frac{1}{\sqrt{3}}i+\frac{1}{\sqrt{3}}j+\frac{1}{\sqrt{3}}k,\) which points toward the position of the Sun at a particular time of day.

    c. Find symmetric equations of line \(\displaystyle L_2\) that passes through the center of the solar panel and is perpendicular to it.

    d. Determine the angle of elevation of the Sun above the solar panel by using the angle between lines \(\displaystyle L_1\) and \(\displaystyle L_2\).


    5.5E: Excersies is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?