Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Chapter 2

  • Page ID
    34378
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    Solutions Exercises 2.1

    Exercise 2.1E1

    Hint:

    \( Let \hspace{5mm} u = x^{3} \)

    Table of integration and initial equation:

    \( \begin{array}{r|r} \nonumber Let \hspace{1mm} u=x^{3} & Let \hspace{1mm} dv = e^{2 x}dx \\ du = 3 x^{2}dx & v = \frac{e^{2 x}}{2}\end{array} \)
    \( \int x^{3} e^{2 x}\, dx = \frac{x^{3} e^{2 x}}{2} - \int \frac{3 x^{2} e^{2 x}}{2}\, dx \)

    Antiderivative and graph snippet:

    \( \int x^{3} e^{2 x}\, dx = \frac{\left(4 x^{3} - 6 x^{2} + 6 x - 3\right) e^{2 x}}{8} + C \)

    Exercise 2.1E1.png

    Exercise 2.1E3

    Hint:

    \( Let \hspace{5mm} u = y^{3} \)

    Table of integration and initial equation:

    \( \begin{array}{r|r} \nonumber Let \hspace{1mm} u=y^{3} & Let \hspace{1mm} dv = \cos{\left(y \right)}dy \\ du = 3 y^{2}dy & v = \sin{\left(y \right)}\end{array} \)
    \( \int y^{3} \cos{\left(y \right)}\, dy = y^{3} \sin{\left(y \right)} - \int 3 y^{2} \sin{\left(y \right)}\, dy \)

    Antiderivative and graph snippet:

    \( \int y^{3} \cos{\left(y \right)}\, dy = y^{3} \sin{\left(y \right)} + 3 y^{2} \cos{\left(y \right)} - 6 y \sin{\left(y \right)} - 6 \cos{\left(y \right)} + C \)

    Exercise 2.1E3.png

    Exercise 2.1E6

    Hint:

    \( Let \hspace{5mm} u = v \)

    Table of integration and initial equation:

    \( \begin{array}{r|r} \nonumber Let \hspace{1mm} u=v & Let \hspace{1mm} dv = \sin{\left(v \right)}dv \\ du = 1dv & v = - \cos{\left(v \right)}\end{array} \)
    \( \int v \sin{\left(v \right)}\, dv = - v \cos{\left(v \right)} - \int - \cos{\left(v \right)}\, dv \)

    Antiderivative and graph snippet:

    \( \int v \sin{\left(v \right)}\, dv = - v \cos{\left(v \right)} + \sin{\left(v \right)} + C \)

    Exercise 2.1E6.png