Skip to main content
Mathematics LibreTexts

4.2E: Exercises

  • Page ID
    18187
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants \(c_1\) and \(c_2\).

    (a) \(\begin{array}{ccl}y'_1&=&2y_1 + 4y_2\\
    y_2'&=&4y_1+2y_2;\end{array} \quad
    {\bf y}=c_111e^{6t}+c_21{-1}e^{-2t}\)

    (b) \(\begin{array}{ccl}y'_1&=&-2y_1 - 2y_2\\
    y_2'&=&-5y_1 + \phantom{2}y_2;\end{array} \quad
    {\bf y}=c_111e^{-4t}+c_2{-2}5e^{3t}\)

    (c) \(\begin{array}{ccr}y'_1&=&-4y_1 -10y_2\\
    y_2'&=&3y_1 + \phantom{1}7y_2;\end{array} \quad
    {\bf y}=c_1{-5}3e^{2t}+c_2 2{-1}e^t\)

    (d) \(\begin{array}{ccl}y'_1&=&2y_1 +\phantom{2}y_2 \\
    y_2'&=&\phantom{2}y_1 + 2y_2;\end{array} \quad
    {\bf y}=c_111e^{3t}+c_21{-1}e^t\)

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{2}\)

    Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants \(c_1\), \(c_2\), and \(c_3\).

    (a) \(\begin{array}{ccr}y'_1&=&- y_1+2y_2 + 3y_3 \\
    y_2'&=&y_2 + 6y_3\\y_3'&=&- 2y_3;\end{array}\)

    \({\bf y}=c_1110e^t+c_2100e^{-t}+c_31{-2}1e^{-2t}\)

    (b) \(\begin{array}{ccc}y'_1&=&\phantom{2y_1+}2y_2 + 2y_3 \\
    y_2'&=&2y_1\phantom{+2y_2} + 2y_3\\y_3'&=&2y_1 +
    2y_2;\phantom{+2y_3}\end{array}\)

    \({\bf y}=c_1{-1}01e^{-2t}+c_20{-1}1e^{-2t}+c_3111e^{4t}\)

    (c) \(\begin{array}{ccr}y'_1&=&-y_1 +2y_2 + 2y_3\\
    y_2'&=&2y_1 -\phantom{2}y_2 +2y_3\\y_3'&=&2y_1 + 2y_2
    -\phantom{2}y_3;\end{array}\)

    \({\bf y}=c_1{-1}01e^{-3t}+c_20{-1}1e^{-3t}+c_3111e^{3t}\)

    (d) \(\begin{array}{ccr}y'_1&=&3y_1 - \phantom{2}y_2 -\phantom{2}y_3
    \\ y_2'&=&-2y_1 + 3y_2 + 2y_3\\y_3'&=&\phantom{-}4y_1 -\phantom{3}y_2 -
    2y_3;\end{array}\)

    \({\bf y}=c_1101e^{2t}+c_21{-1}1e^{3t}+c_31{-3}7e^{-t}\)

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{3}\)

    Rewrite the initial value problem in matrix form and verify that the given vector function is a solution.

    (a) \begin{eqnarray*}y'_1 &=&\phantom{-2}y_1+\phantom{4}y_2\\
    y_2'&=&-2y_1 + 4y_2,\end{eqnarray*}

    \begin{eqnarray*}y_1(0)&=&1\\y_2(0)&=&0;\end{eqnarray*}

    \({\bf y}=211e^{2t}-12e^{3t}\)

    (b) \begin{eqnarray*}y'_1 &=&5y_1 + 3y_2 \\
    y_2'&=&- y_1 + y_2,\end{eqnarray*}

    \begin{eqnarray*}y_1(0)&=&12\\y_2(0)&=&-6;\end{eqnarray*}

    \({\bf y}=31{-1}e^{2t}+33{-1}e^{4t}\)

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{4}\)

    Rewrite the initial value problem in matrix form and verify that the given vector function is a solution.

    (a) \begin{eqnarray*}y'_1&=&6y_1 + 4y_2 + 4y_3 \\
    y_2'&=&-7y_1 -2y_2 - y_3,\\y_3'&=&7y_1 + 4y_2 + 3y_3,\end{eqnarray*}

    \begin{eqnarray*}y_1(0)&=&3\\ y_2(0)&=&-6\\ y_3(0)&=&4\end{eqnarray*}

    \({\bf y}=1{-1}1e^{6t}+21{-2}1e^{2t}+0{-1}1e^{-t}\)

    (b) \begin{eqnarray*}y'_1&=& \phantom{-}8y_1 + 7y_2 +\phantom{1}7y_3 \\
    y_2'&=&-5y_1 -6y_2 -\phantom{1}9y_3,\\y_3'&=& \phantom{-}5y_1 + 7y_2 +10y_3,\end{eqnarray*}

    \begin{eqnarray*}y_1(0)&=&2\\ y_2(0)&=&-4\\ y_3(0)&=&3\end{eqnarray*}

    \({\bf y}=1{-1}1e^{8t}+0{-1}1e^{3t}+1{-2}1e^t\)

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{5}\)

    Rewrite the system in matrix form and verify that the given vector function satisfies the ystem for any choice of the constants \(c_1\) and \(c_2\).

    (a) \begin{eqnarray*}y'_1&=&-3y_1+2y_2+3-2t \\ y_2'&=&-5y_1+3y_2+6-3t\end{eqnarray*}

    \({\bf y}=c_1 \left[\begin{array}2\cos t\\3\cos t-\sin t\end{array} \right] + c_2 \left[ \begin{array}2\sin t\\3\sin t+\cos t \end{array} \right] + 1t\)

    (b) \begin{eqnarray*}y'_1&=&3y_1+y_2-5e^t \\ y_2'&=&-y_1+y_2+e^t\end{eqnarray*}

    \({\bf y}=c_1{-1}1e^{2t}+c_2\left[\begin{array}1+t\\-t\end{array} \right]e^{2t}+13e^t\)

    (c) \begin{eqnarray*}y'_1&=&-y_1-4y_2+4e^t+8te^t \\ y_2'&=&-y_1-\phantom{4}y_2+e^{3t}+(4t+2)e^t\end{eqnarray*}

    \({\bf y}=c_121e^{-3t}+c_2{-2}1e^t+\left[\begin{array}{c} e^{3t}\\2te^t\end{array}\right]\)

    (d) \begin{eqnarray*}y'_1&=&-6y_1-3y_2+14e^{2t}+12e^t \\ y_2'&=&\phantom{6}y_1-2y_2+7e^{2t}-12e^t\end{eqnarray*}

    \({\bf y}=c_1{-3}1e^{-5t}+c_2{-1}1e^{-3t}+ \left[\begin{array}{c}e^{2t}+3e^t\\2e^{2t}-3e^t\end{array}\right]\)

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{6}\)

    Convert the linear scalar equation

    \begin{equation} \label{eq:4.2E.1}
    P_0 (t) y^{(n)} + P_1 (t) y^{(n-1)} + \cdots + P_n (t) y(t) = F(t)
    \end{equation}

    into an equivalent \(n\times n\) system

    \begin{eqnarray*}
    {\bf y'} = A(t) {\bf y} + {\bf f}(t),
    \end{eqnarray*}

    and show that \(A\) and \({\bf f}\) are continuous on an interval \((a,b)\) if and only if \eqref{eq:4.2E.1} is normal on \((a,b)\).

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{7}\)

    A matrix function

    \begin{eqnarray*}
    Q(t) = q_{rs}
    \end{eqnarray*}

    is said to be \( \textcolor{blue}{\mbox{differentiable}} \) if its entries \(\{q_{ij}\}\) are differentiable. Then the \( \textcolor{blue}{\mbox{derivative}} \) \(Q'\) is defined by

    \begin{eqnarray*}
    Q'(t) = q'_{rs}.
    \end{eqnarray*}

    (a) Prove: If \(P\) and \(Q\) are differentiable matrices such that \(P+Q\) is defined and if \(c_1\) and \(c_2\) are constants, then

    \begin{eqnarray*}
    (c_1 P + c_2 Q)' = c_1 P' + c_2 Q'.
    \end{eqnarray*}

    (b) Prove: If \(P\) and \(Q\) are differentiable matrices such that \(PQ\) is defined, then

    \begin{eqnarray*}
    (PQ)' = P'Q + PQ'.
    \end{eqnarray*}

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{8}\)

    Verify that \(Y' = AY\).

    (a) \(Y = \left[ \begin{array} \\ {e^{6t}} & {e^{-2t}}\\ {e^{6t}} & {-e^{-2t}} \end{array} \right], \quad A = \left[ \begin{array} \\ 2 & 4 \\ 4 & 2 \end{array} \right]\)

    (b) \( Y = \left[\begin{array} \\ {e^{-4t}} & {-2e^{3t}} \\ {e^{-4t}} & {5e^{3t}} \end{array} \right], \quad A = \left[ \begin{array} \\ {-2} & {-2} \\ {-5} & {1} \end{array} \right] \)

    (c) \( Y = \left[ \begin{array} \\ {-5e^{2t}} & {2e^t} \\ {3e^{2t}} & {-e^t} \end{array} \right], \quad A = \left[ \begin{array} \\ {-4} & {-10} \\ 3 & 7 \end{array} \right] \)

    (d) \( Y = \left[ \begin{array} \\ {e^{3t}} & {e^t} \\ {e^{3t}} & {-e^t} \end{array} \right], \quad A = \left[ \begin{array} \\ 2 & 1 \\ 1 & 2 \end{array} \right] \)

    (e) \(Y = \left[ \begin{array} \\ {e^t} & {e^{-t}} & {e^{-2t}} \\ {e^t} & 0 & {-2e^{-2t}} \\ 0 & 0 & {e^{-2t}} \end{array} \right], \quad A = \left[ \begin{array} \\ {-1} & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & {-2} \end{array} \right] \)

    (f) \( Y = \left[ \begin{array} \\ {-e^{-2t}} & {-e^{-2t}} & {e^{4t}} \\ 0 & {\phantom{-} e^{-2t}} & {e^{4t}} \\ {e^{-2t}} & 0 & { e^{4t}} \end{array} \right], \quad A = \left[ \begin{array} \\ 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{array} \right] \)

    (g) \( Y = \left[ \begin{array} \\ {e^{3t}} & {e^{-3t}} & 0 \\ {e^{3t}} & 0 & {-e{-3t}} \\ {e^{3t}} & {e^{-3t}} & {\phantom{-}e^{-3t}} \end{array} \right], \quad A = \left[ \begin{array} \\ {-9} & 6 & 6 \\ {-6} & 3 & 6 \\ {-6} & 6 & 3 \end{array} \right] \)

    (h) \( Y = \left[ \begin{array} \\ {e^{2t}} & {e^{3t}} & {e^{-t}} \\ 0 & {-e^{-3t}} & {-3e^{-t}} \\ {e^{2t}} & {e^{3t}} & {7e^{-t}} \end{array} \right], \quad A = \left[ \begin{array} \\ 3 & {-1} & {-1} \\ {-2} & 3 & 2 \\ 4 & {-1} & {-2} \end{array} \right] \)

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{9}\)

    Suppose \( {\bf y}_1 = \left[ \begin{array} \\ y_{11} \\ y_{21} \end{array} \right] \quad \mbox{and} \quad {\bf y}_2 = \left[ \begin{array} \\ y_{12} \\ y_{22} \end{array} \right] \) are solutions of the homogeneous system

    \begin{equation} \label{eq:4.2E.2}
    {\bf y}' = A(t) {\bf y},
    \end{equation}

    and define \( Y = \left[ \begin{array} \\ \; y_{11} \; y_{12} \\ \; y_{21} \; y_{22} \end{array} \right] \).

    (a) Show that \(Y'=AY\).

    (b) Show that if \({\bf c}\) is a constant vector then \({\bf y}= Y{\bf c}\) is a solution of \eqref{eq:4.2E.2}.

    (c) State generalizations of part (a) and part (b) for \(n\times n\) systems.

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{10}\)

    Suppose \(Y\) is a differentiable square matrix.

    (a) Find a formula for the derivative of \(Y^2\).

    (b) Find a formula for the derivative of \(Y^n\), where \(n\) is any positive integer.

    (c) State how the results obtained in part (a\) and part (b\) are analogous to results from calculus concerning scalar functions.

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{11}\)

    It can be shown that if \(Y\) is a differentiable and invertible square matrix function, then \(Y^{-1}\) is differentiable.

    (a) Show that \((Y^{-1})' = -Y^{-1}Y'Y^{-1}\).
    Hint: Differentiate the identity \(Y^{-1}Y=I\).

    (b) Find the derivative of \(Y^{-n}=\left(Y^{-1}\right)^n\), where \(n\) is a positive integer.

    (c) State how the results obtained in part (a) and part (b) are analogous to results from calculus concerning scalar functions.

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{12}\)

    Show that Theorem \((4.2.1)\) implies Theorem \((3.1.1)\).

    Hint: Write the scalar equation

    \begin{eqnarray*}
    P_0(x)y^{(n)} + P_1(x)y^{(n-1)} + \cdots + P_n(x)y = F(x)
    \end{eqnarray*}

    as an \(n\times n\) system of linear equations.

    Answer

    Add texts here. Do not delete this text first.

    Exercise \(\PageIndex{13}\)

    Suppose \({\bf y}\) is a solution of the \(n\times n\) system \({\bf y}'=A(t){\bf y}\) on \((a,b)\), and that the \(n\times n\) matrix \(P\) is invertible and differentiable on \((a,b)\). Find a matrix \(B\) such that the function \({\bf x}=P{\bf y}\) is a solution of \({\bf x}'=B{\bf x}\) on \((a,b)\).

    Answer

    Add texts here. Do not delete this text first.


    This page titled 4.2E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.