3.3: Series Solutions Near an Ordinary Point II
- Page ID
- 17428
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In this section we continue to find series solutions
\begin{eqnarray*}
y=\sum_{n=0}^\infty a_n(x-x_0)^n
\end{eqnarray*}
of initial value problems
\begin{equation} \label{eq:3.3.1}
P_0(x)y''+P_1(x)y'+P_2(x)y=0,\quad y(x_0)=a_0,\quad y'(x_0)=a_1,
\end{equation}
where \(P_0,P_1\), and \(P_2\) are polynomials and \(P_0(x_0)\ne0\), so \(x_0\) is an ordinary point of \eqref{eq:3.3.1}. However, here we consider cases where the differential equation in \eqref{eq:3.3.1} is not of the form
\begin{eqnarray*}
\left(1+\alpha(x-x_0)^2\right)y''+\beta(x-x_0) y'+\gamma y=0,
\end{eqnarray*}
so Theorem \((3.2.2)\) does not apply, and the computation of the coefficients \(\{a_n\}\) is more complicated. For the equations considered here it's difficult or impossible to obtain an explicit formula for \(a_n\) in terms of \(n\). Nevertheless, we can calculate as many coefficients as we wish. The next three examples illustrate this.
Example \(\PageIndex{1}\)
Find the coefficients \(a_0\), \(\dots\), \(a_7\) in the series solution \(y=\sum^\infty_{n=0} a_nx^n\) of the initial value problem
\begin{equation} \label{eq:3.3.2}
(1+x+2x^2)y''+(1+7x)y'+2y=0,\quad y(0)=-1,\quad y'(0)=-2.
\end{equation}
- Answer
-
Here
\begin{eqnarray*}
Ly=(1+x+2x^2)y''+(1+7x)y'+2y.
\end{eqnarray*}The zeros \((-1\pm i\sqrt7)/4\) of \(P_0(x)=1+x+2x^2\) have absolute value \(1/\sqrt2\), so Theorem \((3.2.2)\) implies that the series solution converges to the solution of \eqref{eq:3.3.2} on \((-1/\sqrt2,1/\sqrt2)\). Since
\begin{eqnarray*}
y=\sum^\infty_{n=0} a_nx^n,\quad y'=\sum^\infty_{n=1} n a_nx^{n-1}\quad\mbox{ and }\quad y''=\sum^\infty_{n=2}n(n-1)a_nx^{n-2},
\end{eqnarray*}\begin{eqnarray*}
Ly&=&\sum^\infty_{n=2}n(n-1)a_nx^{n-2}+\sum^\infty_{n=2}n(n-1)a_nx^{n-1} +2\sum^\infty_{n=2}n(n-1)a_nx^n\\
&&+\sum^\infty_{n=1}na_nx^{n-1}+7\sum^\infty_{n=1}na_nx^n+2\sum^\infty_{n=0} a_nx^n.
\end{eqnarray*}Shifting indices so the general term in each series is a constant multiple of \(x^n\) yields
\begin{eqnarray*}
Ly&=&\sum^\infty_{n=0}(n+2)(n+1)a_{n+2}x^n+\sum^\infty_{n=0}(n+1)na_{n+1}x^n+2\sum^\infty_{n=0}n(n-1)a_nx^n\\
&&+\sum^\infty_{n=0}(n+1)a_{n+1}x^n+7\sum^\infty_{n=0}na_nx^n+ 2\sum^\infty_{n=0}a_nx^n =\sum^\infty_{n=0}b_nx^n,
\end{eqnarray*}where
\begin{eqnarray*}
b_n=(n+2)(n+1)a_{n+2}+(n+1)^2a_{n+1}+(n+2)(2n+1)a_n.
\end{eqnarray*}Therefore \(y=\sum^\infty_{n=0}a_nx^n\) is a solution of \(Ly=0\) if and only if
\begin{equation} \label{eq:3.3.3}
a_{n+2}=-{n+1\over n+2}\,a_{n+1}-{2n+1\over n+1}\,a_n,\,n\ge0.
\end{equation}From the initial conditions in \eqref{eq:3.3.2}, \(a_0=y(0)=-1\) and \(a_1=y'(0)=-2\). Setting \(n=0\) in \eqref{eq:3.3.3} yields
\begin{eqnarray*}
a_2=-{1\over2}a_1-a_0=-{1\over2}(-2)-(-1)=2.
\end{eqnarray*}Setting \(n=1\) in \eqref{eq:3.3.3} yields
\begin{eqnarray*}
a_3=-{2\over3}a_2-{3\over2}a_1=-{2\over3}(2)-{3\over2}(-2)={5\over3}.
\end{eqnarray*}We leave it to you to compute \(a_4,a_5,a_6,a_7\) from \eqref{eq:3.3.3} and show that
\begin{eqnarray*}
y=-1-2x+2x^2+{5\over3}x^3-{55\over12}x^4+{3\over4}x^5+{61\over8}x^6- {443\over56}x^7+\cdots .
\end{eqnarray*}We also leave it to you in Exercise \((3.3E.13)\) to verify numerically that the Taylor polynomials \(T_N(x)=\sum_{n=0}^Na_nx^n\) converge to the solution of \eqref{eq:3.3.2} on \((-1/\sqrt2,1/\sqrt2)\).
Example \(\PageIndex{2}\)
Find the coefficients \(a_0\), \(\dots\), \(a_5\) in the series solution
\begin{eqnarray*}
y=\sum^\infty_{n=0} a_n(x+1)^n
\end{eqnarray*}
of the initial value problem
\begin{equation} \label{eq:3.3.4}
(3+x)y''+(1+2x)y'-(2-x)y=0,\quad y(-1)=2,\quad y'(-1)=-3.
\end{equation}
- Answer
-
Since the desired series is in powers of \(x+1\) we rewrite the differential equation in \eqref{eq:3.3.4} as \(Ly=0\), with
\begin{eqnarray*}
Ly=\left(2+(x+1)\right)y''-\left(1-2(x+1)\right)y'-\left(3-(x+1)\right)y.
\end{eqnarray*}Since
\begin{eqnarray*}
y=\sum^\infty_{n=0} a_n(x+1)^n,\quad y'=\sum^\infty_{n=1} n a_n(x+1)^{n-1}\quad\mbox{ and }\quad y''=\sum^\infty_{n=2}n(n-1)a_n(x+1)^{n-2},
\end{eqnarray*}\begin{eqnarray*}
Ly&=&2\sum^\infty_{n=2}n(n-1)a_n(x+1)^{n-2}+\sum^\infty_{n=2}n(n-1)a_n(x+1)^{n-1}\\
&&-\sum^\infty_{n=1}na_n(x+1)^{n-1}+2\sum^\infty_{n=1}na_n(x+1)^n\\
&&-3\sum^\infty_{n=0}a_n(x+1)^n+\sum_{n=0}^\infty a_n(x+1)^{n+1}.
\end{eqnarray*}Shifting indices so that the general term in each series is a constant multiple of \((x+1)^n\) yields
\begin{eqnarray*}
Ly&=&2\sum^\infty_{n=0}(n+2)(n+1)a_{n+2}(x+1)^n+\sum^\infty_{n=0}(n+1)na_{n+1}
(x+1)^n\\[10pt]&&-\sum^\infty_{n=0}(n+1)a_{n+1}(x+1)^n
+\sum^\infty_{n=0}(2n-3)a_n(x+1)^n+\sum^\infty_{n=1}a_{n-1}(x+1)^n\\
&=&\sum^\infty_{n=0}b_n(x+1)^n,
\end{eqnarray*}where
\begin{eqnarray*}
b_0=4a_2-a_1-3a_0
\end{eqnarray*}and
\begin{eqnarray*}
b_n=2(n+2)(n+1)a_{n+2}+(n^2-1)a_{n+1}+(2n-3)a_n+a_{n-1},\quad n\ge1.
\end{eqnarray*}Therefore \(y=\sum^\infty_{n=0}a_n(x+1)^n\) is a solution of \(Ly=0\) if and only if
\begin{equation} \label{eq:3.3.5}
a_2={1\over4}(a_1+3a_0)
\end{equation}and
\begin{equation} \label{eq:3.3.6}
a_{n+2}=-{1\over2(n+2)(n+1)}\left[(n^2-1)a_{n+1}+(2n-3)a_n+a_{n-1}\right], \quad n\ge1.
\end{equation}From the initial conditions in \eqref{eq:3.3.4}, \(a_0=y(-1)=2\) and \(a_1=y'(-1)=-3\). We leave it to you to compute \(a_2\), \(\dots\), \(a_5\) with \eqref{eq:3.3.5} and \eqref{eq:3.3.6} and show that the solution of \eqref{eq:3.3.4} is
\begin{eqnarray*}
y=-2-3(x+1)+{3\over4}(x+1)^2-{5\over12}(x+1)^3+{7\over48}(x+1)^4 -{1\over60}(x+1)^5+\cdots.
\end{eqnarray*}We also leave it to you in Exercise \((3.3E.14)\) to verify numerically that the Taylor polynomials \(T_N(x)=\sum_{n=0}^Na_nx^n\) converge to the solution of \eqref{eq:3.3.4} on the interval of convergence of the power series solution.
Example \(\PageIndex{3}\)
Find the coefficients \(a_0\), \(\dots\), \(a_5\) in the series solution \(y=\sum^\infty_{n=0} a_nx^n\) of the initial value problem
\begin{equation} \label{eq:3.3.7}
y''+3xy'+(4+2x^2)y=0,\quad y(0)=2,\quad y'(0)=-3.
\end{equation}
- Answer
-
Here
\begin{eqnarray*}
Ly=y''+3xy'+(4+2x^2)y.
\end{eqnarray*}Since
\begin{eqnarray*}
y=\sum^\infty_{n=0} a_nx^n,\quad y'=\sum^\infty_{n=1} n a_nx^{n-1},\quad\mbox{ and }\quad y''=\sum^\infty_{n=2}n(n-1)a_nx^{n-2},
\end{eqnarray*}\begin{eqnarray*}
Ly&=&\sum^\infty_{n=2}n(n-1)a_nx^{n-2} +3\sum^\infty_{n=1}na_nx^n+4\sum^\infty_{n=0}a_nx^n+2\sum^\infty_{n=0} a_nx^{n+2}.
\end{eqnarray*}Shifting indices so that the general term in each series is a constant multiple of \(x^n\) yields
\begin{eqnarray*}
Ly=\sum^\infty_{n=0}(n+2)(n+1)a_{n+2}x^n+\sum^\infty_{n=0}(3n+4)a_nx^n +2\sum^\infty_{n=2}a_{n-2}x^n=\sum_{n=0}^\infty b_nx^n
\end{eqnarray*}where
\begin{eqnarray*}
b_0=2a_2+4a_0,\quad b_1=6a_3+7a_1,
\end{eqnarray*}and
\begin{eqnarray*}
b_n=(n+2)(n+1)a_{n+2}+(3n+4)a_n+2a_{n-2},\quad n\ge2.
\end{eqnarray*}Therefore \(y=\sum^\infty_{n=0}a_nx^n\) is a solution of \(Ly=0\) if and only if
\begin{equation} \label{eq:3.3.8}
a_2=-2a_0,\quad a_3=-{7\over6}a_1,
\end{equation}and
\begin{equation} \label{eq:3.3.9}
a_{n+2}=-{1\over (n+2)(n+1)}\left[(3n+4)a_n+2a_{n-2}\right],\quad n\ge2.
\end{equation}From the initial conditions in \eqref{eq:3.3.7}, \(a_0=y(0)=2\) and \(a_1=y'(0)=-3\). We leave it to you to compute \(a_2\), \(\dots\), \(a_5\) with \eqref{eq:3.3.8} and \eqref{eq:3.3.9} and show that the solution of \eqref{eq:3.3.7} is
\begin{eqnarray*}
y=2-3x-4x^2+{7\over2}x^3+3x^4-{79\over40}x^5+\cdots.
\end{eqnarray*}We also leave it to you in Exercise \((3.3E.15)\) to verify numerically that the Taylor polynomials \(T_N(x)=\sum_{n=0}^Na_nx^n\) converge to the solution of \eqref{eq:3.3.9} on the interval of convergence of the power series solution.