4.2E: Exercises
- Page ID
- 18187
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants \(c_1\) and \(c_2\).
- \(\begin{array}{ccl}y'_1&=&2y_1 + 4y_2\\[4pt] y_2'&=&4y_1+2y_2;\end{array} \quad {\bf y}=c_1 \left[\begin{array}{c} 1\\1\end{array}\right] e^{6t}+c_2 \left[\begin{array}{c} 1\\-1\end{array}\right]e^{-2t}\)
- \(\begin{array}{ccl}y'_1&=&-2y_1 - 2y_2\\[4pt] y_2'&=&-5y_1 + \phantom{2}y_2;\end{array} \quad {\bf y}=c_1 \left[\begin{array}{c} 1\\1\end{array}\right] e^{-4t}+c_2 \left[\begin{array}{c} -2\\5\end{array}\right] e^{3t}\)
- \(\begin{array}{ccr}y'_1&=&-4y_1 -10y_2\\[4pt] y_2'&=&3y_1 + \phantom{1}7y_2;\end{array} \quad {\bf y}=c_1 \left[\begin{array}{c} -5\\3\end{array}\right] e^{2t}+c_2 \left[\begin{array}{c} 2\\-1\end{array}\right] e^t\)
- \(\begin{array}{ccl}y'_1&=&2y_1 +\phantom{2}y_2 \\[4pt] y_2'&=&\phantom{2}y_1 + 2y_2;\end{array} \quad {\bf y}=c_1\left[\begin{array}{c} 1\\1\end{array}\right] e^{3t}+c_2 \left[\begin{array}{c} 1\\-1\end{array}\right] e^t\)
Exercise \(\PageIndex{2}\)
Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants \(c_1\), \(c_2\), and \(c_3\).
(a)\(\begin{array}{ccr}y'_1&=&- y_1+2y_2 + 3y_3 \\
y_2'&=&y_2 + 6y_3\\y_3'&=&- 2y_3;\end{array}\)
\(\mathbf{y} = c_1 \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right] e^t + c_2 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right] e^{-t} + c_3 \left[\begin{array}{c} 1 \\ -2 \\ 1 \end{array}\right] e^{-2t}.\)
(b) \(\begin{array}{ccc}y'_1&=&\phantom{2y_1+}2y_2 + 2y_3 \\
y_2'&=&2y_1\phantom{+2y_2} + 2y_3\\y_3'&=&2y_1 +
2y_2;\phantom{+2y_3}\end{array}\)
\(\mathbf{y} = c_1 \left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right] e^{-2t }+ c_2 \left[\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right] e^{-2t} + c_3 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] e^{4t}.\)
(c) \(\begin{array}{ccr}y'_1&=&-y_1 +2y_2 + 2y_3\\
y_2'&=&2y_1 -\phantom{2}y_2 +2y_3\\y_3'&=&2y_1 + 2y_2
-\phantom{2}y_3;\end{array}\)
\(\mathbf{y} = c_1 \left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right] e^{-3t }+ c_2 \left[\begin{array}{c} 0 \\ -1 \\ 1 \end{array}\right] e^{-3t} + c_3 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] e^{3t}.\)
(d) \(\begin{array}{ccr}y'_1&=&3y_1 - \phantom{2}y_2 -\phantom{2}y_3
\\ y_2'&=&-2y_1 + 3y_2 + 2y_3\\y_3'&=&\phantom{-}4y_1 -\phantom{3}y_2 -
2y_3;\end{array}\)
\(\mathbf{y} = c_1 \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right] e^{2t }+ c_2 \left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right] e^{3t} + c_3 \left[\begin{array}{c} 1 \\ -3 \\ 7 \end{array}\right] e^{-t}.\)
Exercise \(\PageIndex{3}\)
Rewrite the initial value problem in matrix form and verify that the given vector function is a solution.
(a) \begin{eqnarray*}y'_1 &=&\phantom{-2}y_1+\phantom{4}y_2\\
y_2'&=&-2y_1 + 4y_2,\end{eqnarray*}
\begin{eqnarray*}y_1(0)&=&1\\y_2(0)&=&0;\end{eqnarray*}
\({\bf y}=2 \left[\begin{array}{c} 1\\1\end{array}\right] e^{2t}- \left[\begin{array}{c} 1\\2 \end{array}\right] e^{3t}\)
(b) \begin{eqnarray*}y'_1 &=&5y_1 + 3y_2 \\
y_2'&=&- y_1 + y_2,\end{eqnarray*}
\begin{eqnarray*}y_1(0)&=&12\\y_2(0)&=&-6;\end{eqnarray*}
\({\bf y}=3 \left[\begin{array}{c} 1\\-1\end{array}\right] e^{2t}+3 \left[\begin{array}{c} 3\\-1 \end{array}\right] e^{4t}\)
Exercise \(\PageIndex{4}\)
Rewrite the initial value problem in matrix form and verify that the given vector function is a solution.
(a) \begin{eqnarray*}y'_1&=&6y_1 + 4y_2 + 4y_3 \\
y_2'&=&-7y_1 -2y_2 - y_3,\\y_3'&=&7y_1 + 4y_2 + 3y_3,\end{eqnarray*}
\begin{eqnarray*}y_1(0)&=&3\\ y_2(0)&=&-6\\ y_3(0)&=&4\end{eqnarray*}
\(\mathbf{y} = \left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right] e^{6t }+ 2 \left[\begin{array}{c} 1 \\ -2 \\ 1 \end{array}\right] e^{2t} + \left[\begin{array}{c} 0 \\ -1 \\ 1 \end{array}\right] e^{-t}.\)
(b) \begin{eqnarray*}y'_1&=& \phantom{-}8y_1 + 7y_2 +\phantom{1}7y_3 \\
y_2'&=&-5y_1 -6y_2 -\phantom{1}9y_3,\\y_3'&=& \phantom{-}5y_1 + 7y_2 +10y_3,\end{eqnarray*}
\begin{eqnarray*}y_1(0)&=&2\\ y_2(0)&=&-4\\ y_3(0)&=&3\end{eqnarray*}
\(\mathbf{y} = \left[\begin{array}{c} 1 \\ -1\\ 1 \end{array}\right] e^{8t }+ \left[\begin{array}{c} 0 \\ -1 \\ 1 \end{array}\right] e^{3t} + \left[\begin{array}{c} 1 \\ -2 \\ 1 \end{array}\right] e^{t}.\)
Exercise \(\PageIndex{5}\)
Rewrite the system in matrix form and verify that the given vector function satisfies the ystem for any choice of the constants \(c_1\) and \(c_2\).
(a) \begin{eqnarray*}y'_1&=&-3y_1+2y_2+3-2t \\ y_2'&=&-5y_1+3y_2+6-3t\end{eqnarray*}
\(\mathbf{y} = c_1 \begin{bmatrix} 2\cos t \\ 3\cos t - \sin t \end{bmatrix} + c_2 \begin{bmatrix} 2\sin t \\ 3\sin t + \cos t \end{bmatrix} + \begin{bmatrix} 1 \\ t \end{bmatrix}\)
(b) \begin{eqnarray*}y'_1&=&3y_1+y_2-5e^t \\ y_2'&=&-y_1+y_2+e^t\end{eqnarray*}
\(\mathbf{y} = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ -t \end{bmatrix} e^{2t} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^t \)
(c) \begin{eqnarray*}y'_1&=&-y_1-4y_2+4e^t+8te^t \\ y_2'&=&-y_1-\phantom{4}y_2+e^{3t}+(4t+2)e^t\end{eqnarray*}
\(\mathbf{y} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^t + \begin{bmatrix} e^{3t} \\ 2te^t \end{bmatrix}\)
(d) \begin{eqnarray*}y'_1&=&-6y_1-3y_2+14e^{2t}+12e^t \\ y_2'&=&\phantom{6}y_1-2y_2+7e^{2t}-12e^t\end{eqnarray*}
\(\mathbf{y} = c_1 \begin{bmatrix} -3\\1\end{bmatrix} e^{-5t}+c_2 \begin{bmatrix} -1\\1\end{bmatrix} e^{-3t}+ \begin{bmatrix}{c}e^{2t}+3e^t\\2e^{2t}-3e^t\end{bmatrix}\)
Exercise \(\PageIndex{6}\)
Convert the linear scalar equation
\begin{equation} \label{eq:4.2E.1}
P_0 (t) y^{(n)} + P_1 (t) y^{(n-1)} + \cdots + P_n (t) y(t) = F(t)
\end{equation}
into an equivalent \(n\times n\) system
\begin{eqnarray*}
{\bf y'} = A(t) {\bf y} + {\bf f}(t),
\end{eqnarray*}
and show that \(A\) and \({\bf f}\) are continuous on an interval \((a,b)\) if and only if \eqref{eq:4.2E.1} is normal on \((a,b)\).
- Answer
-
Let \(y_i=y^{(i-1)}\), \(i=1,2,\dots,n\); then \(y_i'=y_{i+1}\),
\(i=1,2,\dots,n-1\) and \(P_0(t)y_n'+P_1(t)y_n+\cdots+P_n(t)y_1=F(t)\), so
\[A=-{1\over P_0}
\left[\begin{array}{ccccc}
0&1&0&\cdots&0\\
0&0&1&\cdots&0\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
0&0&0&\cdots&1\\
P_n&P_{n-1}&P_{n-2}&\cdots&P_1
\end{array}\right]
\quad \mbox{and} \quad
{\bf f}={1\over P_0}
\left[\begin{array}{c}
0\\ 0\\\vdots\\0\\F
\end{array}\right].
\]
If \(P_0,P_1,\dots,P_n\) and \(F\) are continuous and \(P_0\)
has no zeros on \((a,b)\), then \(P_1/P_0,\dots,P_n/P_0\) and
\(F/P_0\) are continuous on \((a,b)\).
Exercise \(\PageIndex{7}\)
A matrix function
\begin{eqnarray*}
Q(t) = q_{rs}
\end{eqnarray*}
is said to be \( \textcolor{blue}{\mbox{differentiable}} \) if its entries \(\{q_{ij}\}\) are differentiable. Then the \( \textcolor{blue}{\mbox{derivative}} \) \(Q'\) is defined by
\begin{eqnarray*}
Q'(t) = q'_{rs}.
\end{eqnarray*}
(a) Prove: If \(P\) and \(Q\) are differentiable matrices such that \(P+Q\) is defined and if \(c_1\) and \(c_2\) are constants, then
\begin{eqnarray*}
(c_1 P + c_2 Q)' = c_1 P' + c_2 Q'.
\end{eqnarray*}
(b) Prove: If \(P\) and \(Q\) are differentiable matrices such that \(PQ\) is defined, then
\begin{eqnarray*}
(PQ)' = P'Q + PQ'.
\end{eqnarray*}
- Answer
-
(a)
\((c_1P+c_2Q)'_{ij}=
(c_1p_{ij}+c_2q_{ij})'=c_1p_{ij}'+c_2q_{ij}'=(c_1P'+c_2Q')_{ij}\) ;
hence
\((c_1P+c_2Q)'=c_1P'+c_2Q'\) .(b) Let \(P\) be \(k\times r\) and \(Q\) be \( r\times s\) ; then
\(PQ\) is \(k\times s\) and \((PQ)_{ij}=\displaystyle\sum_{l=1}^rp_{i,l}q_{\l j}\) .
Therefore,
\((PQ)_{ij}'=\displaystyle\sum_{\l=1}^rp_{i\l}'q_{\l j}
+\sum_{\l=1}^rp_{i\l}q_{\l j}'=(P'Q)_{ij}+(PQ')_{ij}\) . Therefore,
\((PQ)'=P'Q+PQ'\) .
Exercise \(\PageIndex{8}\)
Verify that \(Y' = AY\).
(a) \(Y = \left[ \begin{array} \\ {e^{6t}} & {e^{-2t}}\\ {e^{6t}} & {-e^{-2t}} \end{array} \right], \quad A = \left[ \begin{array} \\ 2 & 4 \\ 4 & 2 \end{array} \right]\)
(b) \( Y = \left[\begin{array} \\ {e^{-4t}} & {-2e^{3t}} \\ {e^{-4t}} & {5e^{3t}} \end{array} \right], \quad A = \left[ \begin{array} \\ {-2} & {-2} \\ {-5} & {1} \end{array} \right] \)
(c) \( Y = \left[ \begin{array} \\ {-5e^{2t}} & {2e^t} \\ {3e^{2t}} & {-e^t} \end{array} \right], \quad A = \left[ \begin{array} \\ {-4} & {-10} \\ 3 & 7 \end{array} \right] \)
(d) \( Y = \left[ \begin{array} \\ {e^{3t}} & {e^t} \\ {e^{3t}} & {-e^t} \end{array} \right], \quad A = \left[ \begin{array} \\ 2 & 1 \\ 1 & 2 \end{array} \right] \)
(e) \(Y = \left[ \begin{array} \\ {e^t} & {e^{-t}} & {e^{-2t}} \\ {e^t} & 0 & {-2e^{-2t}} \\ 0 & 0 & {e^{-2t}} \end{array} \right], \quad A = \left[ \begin{array} \\ {-1} & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & {-2} \end{array} \right] \)
(f) \( Y = \left[ \begin{array} \\ {-e^{-2t}} & {-e^{-2t}} & {e^{4t}} \\ 0 & {\phantom{-} e^{-2t}} & {e^{4t}} \\ {e^{-2t}} & 0 & { e^{4t}} \end{array} \right], \quad A = \left[ \begin{array} \\ 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{array} \right] \)
(g) \( Y = \left[ \begin{array} \\ {e^{3t}} & {e^{-3t}} & 0 \\ {e^{3t}} & 0 & {-e{-3t}} \\ {e^{3t}} & {e^{-3t}} & {\phantom{-}e^{-3t}} \end{array} \right], \quad A = \left[ \begin{array} \\ {-9} & 6 & 6 \\ {-6} & 3 & 6 \\ {-6} & 6 & 3 \end{array} \right] \)
(h) \( Y = \left[ \begin{array} \\ {e^{2t}} & {e^{3t}} & {e^{-t}} \\ 0 & {-e^{-3t}} & {-3e^{-t}} \\ {e^{2t}} & {e^{3t}} & {7e^{-t}} \end{array} \right], \quad A = \left[ \begin{array} \\ 3 & {-1} & {-1} \\ {-2} & 3 & 2 \\ 4 & {-1} & {-2} \end{array} \right] \)
Exercise \(\PageIndex{9}\)
Suppose \( {\bf y}_1 = \left[ \begin{array} \\ y_{11} \\ y_{21} \end{array} \right] \quad \mbox{and} \quad {\bf y}_2 = \left[ \begin{array} \\ y_{12} \\ y_{22} \end{array} \right] \) are solutions of the homogeneous system
\begin{equation} \label{eq:4.2E.2}
{\bf y}' = A(t) {\bf y},
\end{equation}
and define \( Y = \left[ \begin{array} \\ \; y_{11} \; y_{12} \\ \; y_{21} \; y_{22} \end{array} \right] \).
(a) Show that \(Y'=AY\).
(b) Show that if \({\bf c}\) is a constant vector then \({\bf y}= Y{\bf c}\) is a solution of \eqref{eq:4.2E.2}.
(c) State generalizations of part (a) and part (b) for \(n\times n\) systems.
Exercise \(\PageIndex{10}\)
Suppose \(Y\) is a differentiable square matrix.
(a) Find a formula for the derivative of \(Y^2\).
(b) Find a formula for the derivative of \(Y^n\), where \(n\) is any positive integer.
(c) State how the results obtained in part (a) and part (b) are analogous to results from calculus concerning scalar functions.
- Answer
-
(a)
From Exercise~4.2.7(b) with \(P=Q=X\) ,
\((X^2)'=(XX)'=X'X+XX'\) .(b) By starting from
Exercise~4.2.7(b) and using induction it can be shown
if \(P_1,P_2,\dots,P_n\) are square matrices of the same order, then
\((P_1P_2\cdots P_n)'=P_1'P_2\cdots P_n+P_1P_2'\cdots P_n+\cdots+
P_1P_2\cdots P_n'\) . Taking \(P_1=P_2=\cdots=P_n=X\) yields
(A) \((Y^n)'=Y'Y^{n-1}+YY'Y^{n-2}+Y^2Y'Y^{n-3}+\cdots+Y^{n-1}Y'=\displaystyle{
\sum_{r=0}^{n-1}}Y^rY'Y^{n-r-1}\) .(c)
If \(Y\) is a scalar function, then (A) reduces to
the familiar result \((Y^n)'=nY^{n-1}Y'\) .
Exercise \(\PageIndex{11}\)
It can be shown that if \(Y\) is a differentiable and invertible square matrix function, then \(Y^{-1}\) is differentiable.
(a) Show that \((Y^{-1})' = -Y^{-1}Y'Y^{-1}\).
Hint: Differentiate the identity \(Y^{-1}Y=I\).
(b) Find the derivative of \(Y^{-n}=\left[Y^{-1}\right]^n\), where \(n\) is a positive integer.
(c) State how the results obtained in part (a) and part (b) are analogous to results from calculus concerning scalar functions.
Exercise \(\PageIndex{12}\)
Show that Theorem \((4.2.1)\) implies Theorem \((3.1.1)\).
Hint: Write the scalar equation
\begin{eqnarray*}
P_0(x)y^{(n)} + P_1(x)y^{(n-1)} + \cdots + P_n(x)y = F(x)
\end{eqnarray*}
as an \(n\times n\) system of linear equations.
- Answer
-
From Exercise~4.2.6, the initial value problem
(A) \(P_0(x)y^{(n)}+P_1(x)y^{(n-1)}+\cdots+P_n(x)y=F(x)\) ,
\(Y(x_0)=k_0,\ y'(x_0)=k_1,\dots,\ y^{(n-1)}(x_0)=k_{n-1}\) is
equivalent to the initial value problem (B) \({\bf y'}=A(t){\bf y}+{\bf
f}(t)\) , with
$$A=-{1\over P_0}
\left[\begin{array}{ccccc}
0&1&0&\cdots&0\\
0&0&1&\cdots&0\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
0&0&0&\cdots&1\\
P_n&P_{n-1}&P_{n-2}&\cdots&P_1
\end{array}\right],
{\bf f}={1\over P_0}
\left[\begin{array}{c}
0\\ 0\\\vdots\\0\\F
\end{array}\right],
\mbox{\ and \ }
{\bf k}=
\left[\begin{array}{c}
k_0\\k_1\\\vdots\\k_{n-1}
\end{array}\right].
$$
Since Theorem~4.2.1 implies that (B) has a unique solution on
\((a,b)\) , it follows that (A) does also.
Exercise \(\PageIndex{13}\)
Suppose \({\bf y}\) is a solution of the \(n\times n\) system \({\bf y}'=A(t){\bf y}\) on \((a,b)\), and that the \(n\times n\) matrix \(P\) is invertible and differentiable on \((a,b)\). Find a matrix \(B\) such that the function \({\bf x}=P{\bf y}\) is a solution of \({\bf x}'=B{\bf x}\) on \((a,b)\).