4.1E: Exercises
- Page ID
- 17859
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
Tanks \(T_1\) and \(T_2\) contain \(50\) gallons and \(100\) gallons of salt solutions, respectively. A solution with \(2\) pounds of salt per gallon is pumped into \(T_1\) from an external source at \(1\) gal/min, and a solution with \(3\) pounds of salt per gallon is pumped into \(T_2\) from an external source at \(2\) gal/min. The solution from \(T_1\) is pumped into \(T_2\) at \(3\) gal/min, and the solution from \(T_2\) is pumped into \(T_1\) at \(4\) gal/min. \(T_1\) is drained at \(2\) gal/min and \(T_2\) is drained at \(1\) gal/min. Let \(Q_1(t)\) and \(Q_2(t)\) be the number of pounds of salt in \(T_1\) and \(T_2\), respectively, at time \(t>0\). Derive a system of differential equations for \(Q_1\) and \(Q_2\). Assume that both mixtures are well stirred.
Exercise \(\PageIndex{2}\)
Two \(500\) gallon tanks \(T_1\) and \(T_2\) initially contain \(100\) gallons each of salt solution. A solution with \(2\) pounds of salt per gallon is pumped into \(T_1\) from an external source at \(6\) gal/min, and a solution with \(1\) pound of salt per gallon is pumped into \(T_2\) from an external source at \(5\) gal/min. The solution from \(T_1\) is pumped into \(T_2\) at \(2\) gal/min, and the solution from \(T_2\) is pumped into \(T_1\) at \(1\) gal/min. Both tanks are drained at \(3\) gal/min. Let \(Q_1(t)\) and \(Q_2(t)\) be the number of pounds of salt in \(T_1\) and \(T_2\), respectively, at time \(t>0\). Derive a system of differential equations for \(Q_1\) and \(Q_2\) that's valid until a tank is about to overflow. Assume that both mixtures are well stirred.
- Answer
-
\(Q_1'=(\mbox{rate in})_1-(\mbox{rate out})_1\) and \(Q_2'=(\mbox{rate
in})_2-(\mbox{rate out})_2\) .The volumes of the solutions in \(T_1\) and \(T_2\) are \(V_1(t)=100+2t\)
and \(V_2(t)=100+3t\) , respectively. \(T_1\) receives salt from the
external source at the rate of \( \mbox{(2 lb/gal) }\times\mbox{
(6~gal/min)}=\mbox{12 lb/min}\) , and from \(T_2\) at the rate of
\( \mbox{(lb/gal in }T_2)\times\mbox{ (1~gal/min)
}=\displaystyle{1\over100+3t}Q_2 \mbox{ lb/min}\) . Therefore, (A) \( \mbox{(rate
in)}_1= 12+\displaystyle{1\over100+3t}Q_2\) . Solution leaves \(T_1\) at 5~gal/min,
since 3~gal/min are drained and 2~gal/min are pumped to \(T_2\) ; hence
(B) \((\mbox{rate out})_1=(\mbox{ lb/gal in T}_1)\times
\mbox{(5~gal/min) }
=\displaystyle{1\over100+2t}Q_1\times5=\displaystyle{5\over100+2t}Q_1\) . Now (A) and (B)
imply that (C) \(Q_1'=\displaystyle{12-{5\over100+2t}Q_1+{1\over100+3t}Q_2}\) .\(T_2\) receives salt from the external source at the rate of \( \mbox{(1
lb/gal) }\times\mbox{ (5~gal/min)}=\mbox{ 5 lb/min}\) , and from \(T_1\)
at the rate of \) \mbox{(lb/gal in }T_1)\times\mbox{ (2~gal/min)
}=\displaystyle{1\over100+2t}Q_1\times2=\displaystyle{1\over50+t}Q_1 \mbox{ lb/min}\) .
Therefore, (D) \( \mbox{(rate in)}_2= 5+\displaystyle{1\over50+t}Q_1\) . Solution
leaves \(T_2\) at 4~gal/min, since 3~gal/min are drained and 1~gal/min
is pumped to \(T_1\) ; hence (E) \( (\mbox{rate out})_2=(\mbox{ lb/gal in
T}_2)\times \mbox{(4~gal/min) }
=\displaystyle{1\over100+3t}Q_2\times4=\displaystyle{4\over100+3t}Q_2\) . Now (D) and (E)
imply that (F) \(Q_2'=\displaystyle{5+{1\over50+t}Q_1-{4\over100+3t}Q_2}\) . Now
(C) and (F) form the desired system.
Exercise \(\PageIndex{3}\)
A mass \(m_1\) is suspended from a rigid support on a spring \(S_1\) with spring constant \(k_1\) and damping constant \(c_1\). A second mass \(m_2\) is suspended from the first on a spring \(S_2\) with spring constant \(k_2\) and damping constant \(c_2\), and a third mass \(m_3\) is suspended from the second on a spring \(S_3\) with spring constant \(k_3\) and damping constant \(c_3\). Let \(y_1=y_1(t)\), \(y_2=y_2(t)\), and \(y_3=y_3(t)\) be the displacements of the three masses from their equilibrium positions at time \(t\), measured positive upward. Derive a system of differential equations for \(y_1\), \(y_2\) and \(y_3\), assuming that the masses of the springs are negligible and that vertical external forces \(F_1\), \(F_2\), and \(F_3\) also act on the masses.
Exercise \(\PageIndex{4}\)
Let \({\bf X}=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}\) be the position vector of an object with mass \(m\), expressed in terms of a rectangular coordinate system with origin at Earth's center (Figure \((4.1.3)\)). Derive a system of differential equations for \(x\), \(y\), and \(z\), assuming that the object moves under Earth's gravitational force (given by Newton's law of gravitation, as in Example \((4.1.3)\) ) and a resistive force proportional to the speed of the object. Let \(\alpha\) be the constant of proportionality.
- Answer
-
\(m{\bf X}''=-\alpha{\bf X'}-mgR^2\displaystyle{{\bf X}\over\|{\bf X}\|^3}\) ;
see Example~4.1.3.
Exercise \(\PageIndex{5}\)
Rewrite the given system as a first order system.
(a)\begin{array}{lcc} x''' = f(t,x,y,y')\\ y'' =
g(t,y,y') \end{array}
(b)\begin{array}{lcl} u' = f(t,u,v,v',w')\\ v''=g(t,u,v,v',w)\\ w''=h(t,u,v,v',w,w')\end{array}
(c) \(y''' = f(t,y,y',y'')\)
(d) \(y^{(4)} = f(t,y)\)
(e) \begin{array}{lcc} x'' = f(t,x,y)\\ y'' = g(t,x,y) \end{array}
Exercise \(\PageIndex{6}\)
Rewrite the system Equation \((4.1.14)\) of differential equations derived in Example \((4.1.3)\) as a first order system.
Exercise \(\PageIndex{7}\)
Formulate a version of Euler's method (Section 3.1) for the numerical solution of the initial value problem
\begin{array}{rcl}
y_1'&=&g_1(t,y_1,y_2),\quad y_1(t_0)=y_{10},\\
y_2'&=&g_2(t,y_1,y_2),\quad y_2(t_0)=y_{20},
\end{array}
on an interval \([t_0,b]\).
Exercise \(\PageIndex{8}\)
Formulate a version of the improved Euler method (Section 3.2) for the numerical solution of the initial value problem
\begin{array}{rcl}
y_1'&=&g_1(t,y_1,y_2),\quad y_1(t_0)=y_{10},\\
y_2'&=&g_2(t,y_1,y_2),\quad y_2(t_0)=y_{20},
\end{array}
on an interval \([t_0,b]\).
- Answer
-
\begin{eqnarray*}
I_{1i}&=&g_1(t_i,y_{1i},y_{2i}),\\
J_{1i}&=&g_2(t_i,y_{1i},y_{2i}),\\
I_{2i}&=&g_1\left(t_i+h,y_{1i}+hI_{1i},y_{2i}+hJ_{1i}\right),\\
J_{2i}&=&g_2\left(t_i+h,y_{1i}+hI_{1i},y_{2i}+hJ_{1i}\right),\\
y_{1,i+1}&=&y_{1i}+{h\over2}(I_{1i}+I_{2i}),\\
y_{2,i+1}&=&y_{2i}+{h\over2}(J_{1i}+J_{2i}).
\end{eqnarray*}