4.6E: Exercises
- Page ID
- 18479
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises \((4.6E.1)\) to \((4.6E.16)\), find the general solution.
Exercise \(\PageIndex{1}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-1} & 2 \\ {-5} & 5 \end{array} \right] {\bf y} }\)
Exercise \(\PageIndex{2}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-11} & 4 \\ {-26} & 9 \end{array} \right] {\bf y} }\)
- Answer
-
\(\left|\begin{array}{cc}-11-\lambda&4\\-26&9-\lambda
\end{array}\right|=(\lambda+1)^2+4\) .
The augmented matrix of
\(\left(A-\left(-1+2i\right)I\right){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}-10-2i&4&\vdots&0\\
-26&10-2i&\vdots&0 \end{array}\right]\) ,
which is row equivalent to
\(\left[\begin{array}{cccr} 1&{-5+i\over13}&\vdots&0\\
0&0&\vdots&0
\end{array}\right]\) .
Therefore,\(x_1=(5-i)x_2/13\) . Taking \(x_2=13\) yields the eigenvector
\({\bf x}=\left[\begin{array}{c}5-i\\13\end{array}\right]\) .
Taking real and imaginary parts of
\(e^{-t}(\cos2t+i\sin2t)
\left[\begin{array}{c}5-i\\13\end{array}\right]\) yields
$$ {\bf y}=\displaystyle{c_1e^{-t}\left[\begin{array}{c}{5\cos2t+\sin2t}\\{13\cos2t}\end{array}\right]
+c_2e^{-t}\left[\begin{array}{c}{5\sin2t-\cos2t}\\{13\sin2t}\end{array}\right]}.
$$
Exercise \(\PageIndex{3}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 1 & 2 \\ {-4} & 5 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{4}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 5 & {-6} \\ 3 & {-1} \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc} 5-\lambda&-6\\ 3&-1-\lambda
\end{array}\right|=(\lambda-2)^2+9\) .
Hence, \(\lambda=2+3i\) is an eigenvalue of \(A\) . The associated
eigenvectors satisfy \(\left(A-\left(2+3i\right)I\right){\bf x}={\bf
0}\) . The augmented matrix of this system is
\(\left[\begin{array}{cccr} 3-3i&-6&\vdots&0\\
3&-3-3i&\vdots&0 \end{array}\right]\) ,
which is row equivalent to
\(\left[\begin{array}{cccr} 1&-1-i&\vdots&0\\
0&0&\vdots&0
\end{array}\right]\) .
Therefore,\(x_1=(1+i)x_2\) . Taking \(x_2=1\) yields \(x_1=1+i\) , so
\({\bf x}=\left[\begin{array}{c}1+i\\1\end{array}\right]\)
is an eigenvector. Taking real and imaginary parts of
\(e^{2t}(\cos3t+i\sin3t)
\left[\begin{array}{c}1+i\\1\end{array}\right]\) yields
\({\bf y}=\displaystyle{c_1e^{2t}\left[\begin{array}{c}{\cos3t-\sin3t}\\{\cos3t}\end{array}\right]
+c_2e^{2t}\left[\begin{array}{c}{\sin3t+\cos3t}\\{\sin3t}\end{array}\right]}\) .
Exercise \(\PageIndex{5}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 3 & {-3} & 1 \\ 0 & 2 & 2 \\ 5 & 1 & 1 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{6}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-3} & 3 & 1 \\ 1 & {-5} & {-3} \\ {-3} & 7 & 3 \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{ccc}-3-\lambda&3&1\\1&-5-\lambda&-3\\-3
&7&3-\lambda\end{array}\right|=-(\lambda+1)\left((\lambda+2)^2+4\right)\) .
The augmented matrix of \( (A+I){\bf x=0}\) is
\(\left[\begin{array}{rrrcr}-2&3&1&\vdots&0\\1&-4&-3&\vdots&0\\
-3&7&4&\vdots&0\end{array}\right]\) ,
which is row equivalent to
\(\left[\begin{array}{rrrcr} 1&0&1&\vdots&0\\ 0&1&1&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\) .
Therefore,\(x_1=x_2=-x_3\) . Taking \(x_3=1\) yields \({\bf y}_1= \left[ \begin{array}{c}{-1}\\{-1}\\1\end{array}\right]e^{-t}\) .
The augmented matrix of
\(\left(A-(-2+2i)I\right){\bf x=0}\) is
\(\left[\begin{array}{ccccc}-1-2i&3&1&\vdots&0\\1&
-3-2i&-3&\vdots&0\\-3&7&5-2i&\vdots&0
\end{array}\right]\) ,
which is row equivalent to
\(\left[\begin{array}{ccccc} 1&0&-{1+i\over2}&\vdots&0\\
0&1&{1-i\over2}&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\) .
Therefore,\(x_1=\displaystyle{(1+i)\over2}x_3\) and \(x_2=-\displaystyle{(1-i)\over2}x_3\) .
Taking \(x_3=2\) yields the eigenvector
\({\bf x}_2=\left[\begin{array}{c}1+i\\-1+i\\2\end{array}\right]\) .
The real and imaginary parts of
\(e^{-2t}(\cos2t+i\sin2t)\left[\begin{array}{c}1+i\\-1+i\\2\end{array}\right]\)
are
\({\bf y}_2=e^{-2t}\left[\begin{array}{c}{\cos2t-\sin2t}\\{-\cos2t-\sin2t}\\{2\cos2t}\end{array}\right]\)
and
\({\bf y}_3=e^{-2t}\left[\begin{array}{c}{\sin2t+\cos2t}\\{-\sin2t+\cos2t}\\{2\sin2t}\end{array}\right]\) .
Therefore,
\(
\displaystyle{{\bf y}=c_1\left[\begin{array}{c}{-1}\\{-1}\\1\end{array}\right]e^{-t}+c_2e^{-2t}\left[\begin{array}{c}{\cos2t-\sin 2t}\\{-\cos2t-\sin 2t}\\{2\cos2t}\end{array}\right]+c_3e^{-2t}\left[\begin{array}{c} {\sin2t+\cos2t}\\{-\sin2t+\cos2t}\\{2\sin2t}\end{array}\right]}.
\)
Exercise \(\PageIndex{7}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 2 & 1 & {-1} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{8}\)
\( \displaystyle{{\bf y}' = \left[ \begin{array} \\ {-3} & 1 & {-3} \\ 4 & {-1} & 2 \\ 4 & {-2} & 3 \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{ccc}-3-\lambda&1&-3\\4&-1-\lambda&2\\4
&-2&3-\lambda\end{array}\right|=-(\lambda-1)\left((\lambda+1)^2+4\right)\).
The augmented matrix of \((A-I){\bf x=0}\) is
\(\left[\begin{array}{rrrcr}-4&1&-3&\vdots&0\\4&-2&2&\vdots&0\\
4&-2&2&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{rrrcr} 1&0&1&\vdots&0\\ 0&1&1&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=x_2=-x_3\). Taking \(x_3=1\) yields
\({\bf y}_1=\left[\begin{array}{c}{-1}\\{-1}\\1\end{array} \right]e^t\). The augmented matrix of
\(\left(A-(-1+2i)I\right){\bf x=0}\) is
\(\left[\begin{array}{crccr}-2-2i&1&-3&\vdots&0\\4&-2i&2&\vdots&0\\
4&-2&4-2i&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{ccccc} 1&0&{1-i\over2}&\vdots&0\\
0&1&-1&\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=-\displaystyle{1-i\over2}x_3\) and \(x_2=x_3\).
Taking \(x_3=2\) yields the eigenvector
\({\bf x}_2=\left[\begin{array}{c}-1+i\\2\\2\end{array}\right]\).
The real and imaginary parts of
\(e^{-t}(\cos2t+i\sin2t)\left[\begin{array}{c}-1+i\\2\\2\end{array}\right]\)
are \({\bf y}_2=e^{-t}\left[\begin{array}{c}{-\sin2t-\cos2t}\\{2\cos2t}\\{2\cos2t} \end{array} \right]\)
and \({\bf y}_3=e^{-t}\left[\begin{array}{c} {\cos2t-\sin2t}\\{2\sin2t}\\{2\sin2t}\end{array} \right]\).
Therefore,
$$
\displaystyle{{\bf y}=c_1\left[\begin{array}{c}{-1}1\\1 \end{array}\right]e^{-t}+c_2e^{-t} \left[\begin{array}{c}{-\sin 2t-\cos2t}\\{2\cos2t}\\{2\cos2t}\end{array}\right]+c_3e^{-t}\left[\begin{array}{c} {\cos2t-\sin2t}\\{2\sin2t}\\{2\sin2t} \end{array}\right]}.
$$
Exercise \(\PageIndex{9}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 5 & {-4} \\ {10} & 1 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{10}\)
\(\displaystyle{{\bf y}' = {1\over3} \left[ \begin{array} \\ 7 & {-5} \\ 2 & 5 \end{array} \right] {\bf y}}\)
- Answer
-
\(\displaystyle{1\over3}\left|\begin{array}{cc}7-3\lambda&-5\\2&5-3\lambda
\end{array}\right|=\displaystyle{\left(\lambda-2\right)^2+1}\).
The augmented matrix of
\(\displaystyle{\left(A-(2+i)I\right)}{\bf x}={\bf 0}\) is
\(\displaystyle{1\over3}\left[\begin{array}{cccr}1-3i&-5&\vdots&0\\2&-1-3i&\vdots&0
\end{array}\right]\), which is row equivalent to
\(\left[\begin{array}{cccr} 1&-{1+3i\over2}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\). Therefore,\(x_1=\displaystyle{1+3i\over2}x_2\). Taking
\(x_2=2\) yields the eigenvector
\({\bf x}=\left[\begin{array}{c}1+3i\\2\end{array}\right]\).
Taking real and imaginary parts of
\(e^{2t}(\cos t+i\sin t)
\left[\begin{array}{c}1+3i\\2\end{array}\right]\)
yields
$$
\displaystyle{{\bf y}=c_1e^{2t}\left[\begin{array}{c}\cos t-3\sin t
\\2\cos t\end{array}\right]+
c_2e^{2t}\left[\begin{array}{c}
\sin t+3\cos t\\ 2\sin t\end{array}\right]}.
$$
Exercise \(\PageIndex{11}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 3 & 2 \\ {-5} & 1 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{12}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {34} & {52} \\ {-20} & {-30} \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}34-\lambda&52\\-20&-30-\lambda
\end{array}\right|=(\lambda-2)^2+16\). The augmented matrix of
\(\left(A-\left(2+4i\right)I\right){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}32-4i&52&\vdots&0\\-20&-32-4i&\vdots&0
\end{array}\right]\), which is row equivalent to
\(\left[\begin{array}{cccr} 1&{8+i\over5}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\). Therefore,\(x_1=-\displaystyle{(8+i)\over5}x_2\). Taking
\(x_2=5\) yields the eigenvector \({\bf
x}=\left[\begin{array}{c}-8-i\\5\end{array}\right]\).
Taking real and imaginary parts of \(e^{2t}(\cos4t+i\sin
4t)\left[\begin{array}{c}-8-i\\5\end{array}\right]\) yields \(\displaystyle{{\bf
y}=c_1e^{2t}\left[\begin{array}{c}\sin4t-8\cos4t\\
5\cos4t\end{array}\right]+c_2e^{2t}\left[\begin{array}{c}
-\cos4t-8\sin4t\\ 5\sin4t\end{array}\right]}\).
Exercise \(\PageIndex{13}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 1 & 1 & 2 \\ 1 & 0 & {-1} \\ {-1} & {-2} & {-1} \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{14}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 3 & {-4} & {-2} \\ {-5} & 7 & {-8} \\ {-10} & {13} & {-8} \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{ccc}3-\lambda&-4&-2\\-5&7-\lambda&-8\\-10
&13&-8-\lambda\end{array}\right|=-(\lambda+2)\left((\lambda-2)^2+9\right)\).
The augmented matrix of \((A+2I){\bf x=0}\) is
\(\left[\begin{array}{rrrcr}5&-4&-2&\vdots&0\\-5&9&-8&\vdots&0\\
-10&13&-6&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{rrrcr} 1&0&-2&\vdots&0\\ 0&1&-2&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=x_2=2x_3\). Taking \(x_3=1\) yields
\({\bf y}_1=\left[\begin{array}{c}2\\2\\1\end{array}\right]e^{-2t}\).
The augmented matrix of
\(\left(A-(2+3i)I\right){\bf x=0}\) is
\(\left[\begin{array}{ccccr}1-3i&-4&-2&\vdots&0\\-5&5-3i&-8&\vdots&0\\
-10&13&-10-3i&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{ccccc} 1&0&1-i&\vdots&0\\
0&1&-i&\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=-(1-i)x_3\) and \(x_2=ix_3\).
Taking \(x_3=1\) yields the eigenvector
\({\bf x}_2=\left[\begin{array}{c}-1+i\\i\\1\end{array}\right]\).
The real and imaginary parts of \(e^{2t}(\cos3t+i\sin3t)
\left[\begin{array}{c}-1+i\\i\\1\end{array}\right]\) are
\({\bf y}_2=e^{2t}\left[\begin{array}{c}-\cos3t-\sin3t\\-\sin3t\\
\cos3t\end{array}\right]\) and \({\bf y}_3=
c_3e^{2t}\left[\begin{array}{c}-\sin3t+\cos3t\\\cos3t\\
\sin3t\end{array}\right]\). Therefore,
$$
\displaystyle{{\bf
y}=c_1\left[\begin{array}{c} 2\\ 2\\1 \end{array}\right]e^{-2t}+
c_2e^{2t}\left[\begin{array}{c}-\cos3t-\sin3t\\-\sin3t\\
\cos3t\end{array}\right]+c_3e^{2t}\left[\begin{array}{c}
-\sin3t+\cos3t\\\cos3t\\\sin3t\end{array}\right]}.
$$
Exercise \(\PageIndex{15}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 6 & 0 & {-3} \\ {-3} & 3 & 3 \\ 1 & {-2} & 6 \end{array} \right] {\bf y}'}\)
Exercise \(\PageIndex{16}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 1 & 2 & {-2} \\ 0 & 2 & {-1} \\ 1 & 0 & 0 \end{array} \right] {\bf y}'}\)
- Answer
-
\(\left|\begin{array}{ccc}1-\lambda&2&-2\\0&2-\lambda&-1\\1
&0&-\lambda\end{array}\right|=-(\lambda-2)\left((\lambda-1)^2+1\right)\).
The augmented matrix of \((A-I){\bf x=0}\) is
\(\left[\begin{array}{rrrcr}0&2&-2&\vdots&0\\0&
1&-1&\vdots&0\\ 1&0&-1&\vdots&0
\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{rrrcr} 1&0&-1&\vdots&0\\ 0&1&-1&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=x_2=1\). Taking \(x_3=1\) yields
\({\bf y}_1=\left[\begin{array}{c}1\\1\\1\end{array}\right]e^t\).
The augmented matrix of
\(\left(A-(1+i)I\right){\bf x=0}\) is
\(\left[\begin{array}{ccccc}-i&2&-2&\vdots&0\\0&
1-i&-1&\vdots&0\\ 1&0&-1-i&\vdots&0
\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{ccccc} 1&0&-1-i&\vdots&0\\ 0&1&-{1+i\over2}&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=(1+i)x_3\) and \(x_2=\displaystyle{(1+i)\over2}x_3\).
Taking \(x_3=2\) yields the eigenvector
\({\bf x}_2=\left[\begin{array}{c}2+2i\\1+i\\2\end{array}\right]\).
The real and imaginary parts of
\(e^{4t}(\cos t+i\sin t)\left[\begin{array}{c}2+2i
\\1+i\\2\end{array}\right]\) are
\({\bf y}_2=e^t\left[\begin{array}{c} 2\cos t-2\sin t\\\cos t-\sin
t\\ 2\cos t\end{array}\right]\) and
\({\bf y}_3=
c_3e^t\left[\begin{array}{ccc} 2\sin t+2\cos t\\\cos t+\sin t\\
2\sin t\end{array}\right]\). Therefore,
$$
\displaystyle{{\bf y}=c_1\left[\begin{array}{c} 1\\1\\1
\end{array}\right]e^t+
c_2e^t\left[\begin{array}{c} 2\cos t-2\sin t
\\\cos t-\sin t\\ 2\cos t\end{array}\right]+
c_3e^t\left[\begin{array}{ccc} 2\sin t+2\cos t\\\cos t+\sin t\\
2\sin t\end{array}\right]}.
$$
In Exercises \((4.6E.17)\) to \((4.6E.24)\), solve the initial value problem.
Exercise \(\PageIndex{17}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 4 & {-6} \\ 3 & {-2} \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ 5 \\ 2 \end{array} \right] } \)
Exercise \(\PageIndex{18}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 7 & {15} \\ {-3} & 1 \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ 5 \\ 1 \end{array} \right] } \)
- Answer
-
\(\left|\begin{array}{cc}7-\lambda&15\\-3&1-\lambda
\end{array}\right|=(\lambda-4)^2+36\). The augmented matrix of
\(\left(A-\left(4+6i\right)I\right){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}3-6i&15&\vdots&0\\-3&-3-6i&\vdots&0
\end{array}\right]\), which is row equivalent to
\(\left[\begin{array}{cccr} 1&1+2i&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\). Therefore,\(x_1=-(1+2i)x_2\). Taking \(x_2=1\) yields
the eigenvector \({\bf
x}=\left[\begin{array}{c}-1-2i\\1\end{array}\right]\).
Taking real and imaginary parts of
\(e^{4t}(\cos6t+i\sin6t)\left[\begin{array}{c}-1-2i\\1\end{array}\right]\)
yields \({\bf y}=\displaystyle{c_1e^{4t}\left[\begin{array}{c}{2\sin6t-\cos6t} \\ {\cos6t} \end{array} \right]
+c_2e^{4t}\left[\begin{array}{c}{-2\cos6t-\sin6t} \\ {\sin6t} \end{array} \right]}\). Now \({\bf
y}(0)=\left[\begin{array}{c}5\\1\end{array} \right]\Rightarrow
\left[\begin{array}{cc}{-1}\\{-2}\\10\end{array}\right]\left[\begin{array}{c}{c_1}\\{c_2}\end{array} \right]=\left[\begin{array}{c}5\\1 \end{array} \right]\), so \(c_1=1\), \(c_2=-3\),
and \(\displaystyle{{\bf
y}=e^{4t}\left[\begin{array}{c}5\cos6t+5\sin6t\\\cos6t-3\sin6t
\end{array}\right]}\).
Exercise \(\PageIndex{19}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 7 & {-15} \\ 3 & {-5} \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ {17} \\ 7 \end{array} \right]} \)
Exercise \(\PageIndex{20}\)
\(\displaystyle{{\bf y}' = {1\over 6} \left[ \begin{array} \\ 4 & {-2} \\ 5 & 2 \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ 1 \\ {-1} \end{array} \right] }\)
- Answer
-
\(\displaystyle{1\over6}\left|\begin{array}{cc}4-6\lambda&-2\\5&2-6\lambda
\end{array}\right|=\displaystyle{\left(\lambda-{1\over2}\right)^2+{1\over4}}\).
The augmented matrix of
\(\displaystyle{\left(A-{1+i\over2}I\right)}{\bf x}={\bf 0}\) is
\(\displaystyle{1\over6}\left[\begin{array}{cccr}1-3i&-2&\vdots&0\\5&-1-3i&\vdots&0
\end{array}\right]\), which is row equivalent to
\(\left[\begin{array}{cccr} 1&-{1+3i\over5}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\). Therefore,\(x_1=\displaystyle{1+3i\over5}x_2\). Taking
\(x_2=5\) yields the eigenvector
\({\bf x}=\left[\begin{array}{c}1+3i\\5\end{array}\right]\).
Taking real and imaginary parts of
\(e^{t/2}(\cos t/2+i\sin
t/2)\left[\begin{array}{c}1+3i\\5\end{array}\right]\)
yields \({\bf y}=\displaystyle{c_1e^{t/2}\left[\begin{array}{c}{\cos t/2-3\sin t/2}\\{5\cos t/2} \end{array}\right]
+c_2e^{t/2}\left[\begin{array}{c}{\sin t/2+3\cos t/2}\\{5\sin t/2} \end{array}\right] }\).Now \({\bf
y}(0)=\left[\begin{array}{c}1\\{-1}\end{array}\right]\Rightarrow
\left[\begin{array}{cc}1&3\\5&0\end{array}\right]\left[\begin{array}{c}{c_1}\\{c_2}\end{array}\right]=\left[\begin{array}{c}1\\{-1}\end{array}\right]\), so
\(c_1=-\displaystyle{1\over5}\),
\(c_2=\displaystyle{2\over5}\), and
\({\bf y}=\displaystyle{e^{t/2}\left[\begin{array}{c}\cos(t/2)+
\sin(t/2)\\-\cos(t/2)+2\sin(t/2)
\end{array}\right]}\).
Exercise \(\PageIndex{21}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 5 & 2 & {-1} \\ {-3} & 2 & 2 \\ 1 & 3 & 2 \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ 4 \\ 0 \\ 6 \end{array} \right]}\)
Exercise \(\PageIndex{22}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 4 & 4 & 0 \\ 8 & {10} & {-20} \\ 2 & 3 & {-2} \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ 8 \\ 6 \\ 5 \end{array} \right] }\)
- Answer
-
\(\left|\begin{array}{ccc}4-\lambda&4&0\\8&10-\lambda&-20\\2
&3&-2-\lambda\end{array}\right|=-(\lambda-8)\left((\lambda-2)^2+4\right)\).
The augmented matrix of \((A-8I){\bf x=0}\) is
\(\left[\begin{array}{rrrcr}0&4&0&\vdots&0\\8&6&-20&\vdots&0\\
2&3&-6&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{rrrcr} 1&0&-2&\vdots&0\\ 0&1&-2&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=x_2=2x_3\). Taking \(x_3=2\) yields
\({\bf y}_1=\left[\begin{array}{c}2\\2\\1\end{array}\right]e^{8t}\).
The augmented matrix of
\(\left(A-(2+2i)I\right){\bf x=0}\) is
\(\left[\begin{array}{ccccc}2-2i&4&0&\vdots&0\\8&
8-2i&-20&\vdots&0\\2&3&-4-2i&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{ccccc} 1&0&-2+2i&\vdots&0\\
0&1&-2i&\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=(2-2i)x_3\) and \(x_2=2ix_3\).
Taking \(x_3=1\) yields the eigenvector
\({\bf x}_2=\left[\begin{array}{c}2-2i\\2i\\1\end{array}\right]\).
The real and imaginary parts of
\(e^{2t}(\cos2t+i\sin
2t)\left[\begin{array}{c}2-2i\\2i\\1\end{array}\right]\)
are \({\bf y}_2=e^{2t}\left[\begin{array}{c}2\cos2t+2\sin2t
\\-2\sin2t\\2\cos2t\end{array}\right]\) and
\({\bf y}_3=e^{2t}\left[\begin{array}{c}2\sin2t+2\cos2t
\\2\cos2t\\\sin2t\end{array}\right]\), so the general solution
is \({\bf y}=c_1\left[\begin{array}{c}2\\2\\1 \end{array}\right]e^{8t}+c_2
e^{2t}\left[\begin{array}{c}2\cos2t+2\sin2t
\\-2\sin2t\\2\cos2t\end{array}\right]+
c_3e^{2t}\left[\begin{array}{c}2\sin2t+2\cos2t
\\2\cos2t\\\sin2t\end{array}\right]\).
Now \({\bf y}(0)=\left[\begin{array}{c}8\\6\\5 \end{array} \right]\Rightarrow \left[\begin{array}{ccc}2\\2\\{-2}&2\\0\\2&1\\\\10 \end{array} \right]
\left[\begin{array}{c}{c_1}\\{c_2}\\{c_3}\end{array} \right]=\left[\begin{array}{c}8\\6\\5 \end{array} \right]\), so \(c_1=2\), \(c_2=3\),
\(c_3=1\), and \(\displaystyle{{\bf y}=\left[\begin{array}{c}4\\4\\2\end{array} \right]e^{8t}
+e^{2t}\left[\begin{array}{c}4\cos2t+8\sin2t\\
-6\sin2t+2\cos2t\\3\cos2t+\sin2t
\end{array}\right]}\).
Exercise \(\PageIndex{23}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 1 & {15} & {-15} \\ {-6} & {18} & {-22} \\ {-3} & {11} & {-15} \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ {15} \\ {17} \\ {10} \end{array} \right]}\)
Exercise \(\PageIndex{24}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 4 & {-4} & 4 \\ {-10} & 3 & {15} \\ 2 & {-3} & 1 \end{array} \right] {\bf y}, \quad {\bf y}(0) = \left[ \begin{array} \\ {16} \\ {14} \\ 6 \end{array} \right] }\)
- Answer
-
\(\left|\begin{array}{ccc}4-\lambda&-4&4\\-10&3-\lambda&15\\2
&-3&1-\lambda\end{array}\right|=-(\lambda-8)(\lambda^2+16)\).
The augmented matrix of \((A-8I){\bf x=0}\) is
\(\left[\begin{array}{rrrcr}-4&-4&4&\vdots&0\\-10&-5&15&\vdots&0\\
2&-3&-7&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{rrrcr} 1&0&-2&\vdots&0\\ 0&1&1&
\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=2x_3\) and \(x_2=-x_3\). Taking \(x_3=1\) yields
\({\bf y}_1=\left[\begin{array}{c}2\\{-1}\\1\end{array}\right]e^{8t}\).
The augmented matrix of
\(\left(A-4iI\right){\bf x=0}\) is
\(\left[\begin{array}{ccccr}4-4i&-4&4&\vdots&0\\-10&3-4i&15&\vdots&0\\
2&-3&1-4i&\vdots&0\end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{ccccc} 1&0&-1+i&\vdots&0\\
0&1&-1+2i&\vdots&0\\ 0&0&0&\vdots&0\end{array}\right]\).
Therefore,\(x_1=(1-i)x_3\) and \(x_2=(1-2i)x_3\).
Taking \(x_3=1\) yields the eigenvector
\({\bf x}_2=\left[\begin{array}{c}1-i\\1-2i\\1\end{array}\right]\).
The real and imaginary parts of
\((\cos4t+i\sin
4t)\left[\begin{array}{c}1-i\\1-2i\\1\end{array}\right]\)
are \({\bf y}_2=\left[\begin{array}{c}\cos4t+\sin4t
\\\cos4t+2\sin4t\\\cos4t\end{array}\right]\) and
\({\bf y}_3=\left[\begin{array}{c}\sin4t-\cos4t
\\\sin4t-2\cos4t\\\sin4t\end{array}\right]\), so the general solution
is \({\bf y}=c_1 \left[\begin{array}{c}2\\{-1}\\1\end{array}\right]e^{8t}+
c_2\left[\begin{array}{c}\cos4t+\sin4t
\\\cos4t+2\sin4t\\\cos4t\end{array}\right]
+c_3\left[\begin{array}{c}\sin4t-\cos4t
\\\sin4t-2\cos4t\\\sin4t\end{array}\right]\).
Now \({\bf
y}(0)=\left[\begin{array}{c}{16}\\{14}\\6 \end{array}\right]\Rightarrow\left[\begin{array}{ccc}2&1&{-1}\\{-1}&1&{-2}\\1&1&0\end{array}\right]
\left[\begin{array}{c}{c_1}\\{c_2}\\{c_3}\end{array}\right]=\left[\begin{array}{c}{16}\\{14}\\6\end{array}\right]\), so \(c_1=3\), \(c_2=3\),
\(c_3=-7\), and \(\displaystyle{{\bf y}=\left[\begin{array}{c}6\\{-3}\\3\end{array}\right]e^{8t}
+\left[\begin{array}{c}10\cos4t-4\sin4t\\17\cos4t-\sin4t\\3\cos4t-7\sin4t
\end{array}\right]}\).
Exercise \(\PageIndex{25}\)
Suppose an \(n\times n\) matrix \(A\) with real entries has a complex eigenvalue \(\lambda=\alpha+i\beta\) (\(\beta\ne0\)) with associated eigenvector \({\bf x}={\bf u}+i{\bf v}\), where \({\bf u}\) And \({\bf v}\) have real components. Show that \({\bf u}\) And \({\bf v}\) Are both nonzero.
Exercise \(\PageIndex{26}\)
Verify that
\begin{eqnarray*}
{\bf y}_1 = e^{\alpha t} ({\bf u} \cos \beta t - {\bf v} \sin \beta t) \quad \mbox{and} \quad {\bf y}_2 = e^{\alpha t} ({\bf u} \sin \beta t + {\bf v} \cos \beta t),
\end{eqnarray*}
are the real and imaginary parts of
\begin{eqnarray*}
e^{\alpha t} (\cos \beta t + i \sin \beta t) ({\bf u} + i {\bf v}).
\end{eqnarray*}
Exercise \(\PageIndex{27}\)
Show that if the vectors \({\bf u}\) And \({\bf v}\) Are not both \({\bf 0}\) And \(\beta\ne0\) then the vector functions
\begin{eqnarray*}
{\bf y}_1 = e^{\alpha t}({\bf u} \cos \beta t - {\bf v} \sin \beta t) \quad \mbox{and} \quad {\bf y}_2 = e^{\alpha t} ({\bf u} \sin \beta t + {\bf v} \cos \beta t)
\end{eqnarray*}
are linearly independent on every interval.
Hint: There are two cases to consider: \(\{{\bf u},{\bf v}\}\) linearly independent, and \(\{{\bf u},{\bf v}\}\) linearly dependent. In either case, exploit the linear independence of \(\{\cos\beta t,\sin\beta t\}\) on every interval.
Exercise \(\PageIndex{28}\)
Suppose \({\bf u}=\displaystyle{ \left[ \begin{array} \\ {u_1} \\ {u_2} \end{array} \right] }\) And \({\bf v}=\displaystyle{ \left[ \begin{array} \\ {v_1} \\ {v_2} \end{array} \right]}\) Are not orthogonal; that is, \(({\bf u},{\bf v})\ne0\).
(a) Show that the quadratic equation
\begin{eqnarray*}
({\bf u}, {\bf v}) k^2 + (\| {\bf v} \|^2 - \| {\bf u} \|^2) k - ({\bf u}, {\bf v}) = 0
\end{eqnarray*}
has a positive root \(k_1\)And a negative root \(k_2=-1/k_1\).
(b) Let \({\bf u}_1^{(1)}={\bf u}-k_1{\bf v}\), \({\bf v}_1^{(1)}={\bf v}+k_1{\bf u}\), \({\bf u}_1^{(2)}={\bf u}-k_2{\bf v}\), and \({\bf v}_1^{(2)}={\bf v}+k_2{\bf u}\), so that \(({\bf u}_1^{(1)},{\bf v}_1^{(1)}) =({\bf u}_1^{(2)},{\bf v}_1^{(2)})=0\), from the discussion given above. Show that
\begin{eqnarray*}
{\bf u}_1^{(2)} = {{\bf v}_1^{(1)} \over k_1} \quad \mbox{and} \quad {\bf v}_1^{(2)} = -{{\bf u}_1^{(1)} \over k_1}.
\end{eqnarray*}
(c) Let \({\bf U}_1\), \({\bf V}_1\), \({\bf U}_2\), and \({\bf V}_2\) be unit vectors in the directions of \({\bf u}_1^{(1)}\), \({\bf v}_1^{(1)}\), \({\bf u}_1^{(2)}\), and \({\bf v}_1^{(2)}\), respectively. Conclude from part (a) that \({\bf U}_2={\bf V}_1\) And \({\bf V}_2=-{\bf U}_1\), and that therefore the counterclockwise angles from \({\bf U}_1\) to \({\bf V}_1\) And from \({\bf U}_2\) to \({\bf V}_2\) Are both \(\pi/2\) or both \(-\pi/2\).
- Answer
-
(a) From the quadratic formula the roots are
\begin{eqnarray*}
k_1&=&{\|{\bf u}\|^2-\|{\bf v}^2\|+\sqrt{(\|{\bf u}\|^2-\|{\bf
v}^2\|)^2+4({\bf u},{\bf v})^2}\over2({\bf u},{\bf v})}\\
k_2&=&{\|{\bf u}\|^2-\|{\bf v}^2\|-\sqrt{(\|{\bf u}\|^2-\|{\bf
v}^2\|)^2+4({\bf u},{\bf v})^2}\over2({\bf u},{\bf v})}.
\end{eqnarray*}
Clearly \(k_1>0\) and \(k_2<0\). Moreover,
$$
k_1k_2={(\|{\bf u}\|^2-\|{\bf v}^2\|)^2-\left[(\|{\bf u}\|^2-\|{\bf
v}^2\|)^2+4({\bf u},{\bf v})^2\right]\over4({\bf u},{\bf v})^2}=-1.
$$(b) Since \(k_2=-1/k_1\),
\begin{eqnarray*}
{\bf u}_1^{(2)}&=&{\bf u}-k_2{\bf v}={\bf u}+{1\over k_1}{\bf
v}={1\over k_1}({\bf v}+k_1{\bf u})={1\over k_1}{\bf v}_1^{(1)}\\
{\bf v}_1^{(2)}&=&{\bf v}+k_2{\bf u}={\bf v}-{1\over k_1}{\bf
u}=-{1\over k_1}({\bf u}-k_1{\bf v})=-{1\over k_1}{\bf u}_1^{(1)}.
\end{eqnarray*}
In Exercises \((4.6E.29)\) to \((4.6E.32)\), find vectors \({\bf U}\) And \({\bf V}\) parallel to the axes of symmetry of the trajectories, and plot some typical trajectories.
Exercise \(\PageIndex{29}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 3 & {-5} \\ 5 & {-3} \end{array} \right]{\bf y}}\)
Exercise \(\PageIndex{30}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-15} & {10} \\ {-25} & {15} \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}-15-\lambda&10\\-25&15-\lambda
\end{array}\right|=\lambda^2+25\).
The augmented matrix of \((A-5iI){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}-15-5i&10&\vdots&0\\
-25&15-5i&\vdots&0 \end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{cccr} 1&{-3+i\over5}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\).
Therefore,\(x_1=\displaystyle{(3-i)\over5}x_2\). Taking \(x_2=5\)
yields the eigenvector
\({\bf x}=\left[\begin{array}{c}3-i\\5\end{array}\right]\),
so \({\bf u}=\displaystyle{\left[\begin{array}{c}3\\5\end{array}\right]}\) and \({\bf v}=\displaystyle{\left[\begin{array}{c}\\{-1}\\0\end{array}\right]}\).
The quadratic equation is \(-3k^2-33k+3=0\), with positive root
\(k\approx.0902\).
Routine calculations yield
\({\bf U}\approx\displaystyle{\left[\begin{array}{c}{.5257}\\{.8507}\end{array}\right]}\),
\({\bf V}\approx\displaystyle{\left[\begin{array}{c}{-.8507}\\{.5257}\end{array}\right]}\).
Exercise \(\PageIndex{31}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-4} & 8 \\ {-4} & 4 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{32}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-3} & {-15} \\ 3 & 3 \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}-3-\lambda&-15\\3&3-\lambda
\end{array}\right|=\lambda^2+36\).
The augmented matrix of \((A-6iI){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}-3-6i&-15&\vdots&0\\
3&3-6i&\vdots&0 \end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{cccr} 1&1-2i&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\).
Therefore,\(x_1=-(1-2i)x_2\). Taking \(x_2=1\)
yields the eigenvector
\({\bf x}=\left[\begin{array}{c}-1+2i\\1\end{array}\right]\),
so \({\bf u}=\displaystyle{\left[\begin{array}{c}{-1}\\1\end{array}\right]}\) and \({\bf v}=\displaystyle{\left[\begin{array}{c}2\\0\end{array}\right]}\).
The quadratic equation is \(-2k^2+2k+2=0\), with positive root
\(k\approx1.6180\).
Routine calculations yield
\({\bf U}\approx\displaystyle{\left[\begin{array}{c}{-.9732}\\{.2298}\end{array}\right]}\),
\({\bf V}\approx\displaystyle{\left[\begin{array}{c}{.2298}\\{.9732}\end{array}\right]}\).
In Exercises \((4.6E.33)\) to \((4.6E.40)\), find vectors \({\bf U}\) And \({\bf V}\) parallel to the axes of symmetry of the shadow trajectories, and plot a typical trajectory.
Exercise \(\PageIndex{33}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-5} & 6 \\ {-12} & 7 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{34}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 5 & {-12} \\ 6 & {-7} \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}5-\lambda&-12\\6&-7-\lambda
\end{array}\right|=(\lambda+1)^2+36\).
The augmented matrix of \((A-(-1+6i)I){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}6-6i&-12&\vdots&0\\
6&-6-6i&\vdots&0 \end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{cccr} 1&-(1+i)&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\).
Therefore,\(x_1=(1+i)x_2\). Taking \(x_2=1\)
yields the eigenvector
\({\bf x}=\left[\begin{array}{c}1+i\\1\end{array}\right]\),
so \({\bf u}=\displaystyle{\left[\begin{array}{c}1\\1\end{array}\right]}\) and \({\bf v}=\displaystyle{\left[\begin{array}{c}1\\0\end{array}\right]}\).
The quadratic equation is \(k^2-k-1=0\), with positive root
\(k\approx1.6180\).
Routine calculations yield
\({\bf U}\approx\displaystyle{\left[\begin{array}{c}{-.5257}\\{.8507}\end{array}\right]}\),
\({\bf V}\approx\displaystyle{\left[\begin{array}{c}{.8507}\\{.5257}\end{array}\right]}\)
Exercise \(\PageIndex{35}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ 4 & {-5} \\ 9 & {-2} \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{36}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-4} & 9 \\ {-5} & 2 \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}-4-\lambda&9\\-5&2-\lambda
\end{array}\right|=(\lambda+1)^2+36\).
The augmented matrix of \((A-(-1+6i)I){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}-3-6i&9&\vdots&0\\
-5&3-6i&\vdots&0 \end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{cccr} 1&-{3-6i\over5}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\).
Therefore,\(x_1=\displaystyle{3-6i\over5}x_2\). Taking \(x_2=5\)
yields the eigenvector
\({\bf x}=\left[\begin{array}{c}3-6i\\5\end{array}\right]\),
so \({\bf u}=\displaystyle{\left[\begin{array}{c}3\\5\end{array}\right]}\) and \({\bf v}=\displaystyle{\left[\begin{array}{c}{-6}\\0\end{array}\right]}\).
The quadratic equation is \(-18k^2+2k+18=0\), with positive root
\(k\approx1.0571\).
Routine calculations yield
\({\bf U}\approx\displaystyle{\left[\begin{array}{c}{.8817}\\{.4719}\end{array}\right]}\),
\({\bf V}\approx\displaystyle{\left[\begin{array}{c}{-.4719}\\{.8817}\end{array}\right]}\).
Exercise \(\PageIndex{37}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-1} & {10} \\ {-10} & {-1} \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{38}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-1} & {-5} \\ {20} & {-1} \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}-1-\lambda&-5\\20&-1-\lambda
\end{array}\right|=(\lambda+1)^2+100\).
The augmented matrix of \((A-(-1+10i)I){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}-10i&-5&\vdots&0\\
20&-10i&\vdots&0 \end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{cccr} 1&-{i\over2}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\).
Therefore,\(x_1=\displaystyle{i\over2}x_2\). Taking \(x_2=2\)
yields the eigenvector
\({\bf x}=\left[\begin{array}{c}i\\2\end{array}\right]\),
so \({\bf u}=\displaystyle{\left[\begin{array}{c}0\\2}\end{array}\right]}\) and \({\bf v}=\displaystyle{\left[\begin{array}{c}1\\0\end{array}\right]}\).
Since \(({\bf u},{\bf v})=0\) we just normalize \({\bf u}\) and \({\bf v}\)
to obtain
\({\bf U}=\displaystyle{\left[\begin{array}{c}0\\1\end{array}\right]}\), \({\bf V}=\displaystyle{\left[\begin{array}{c}1\\0\end{array}\right]}\).
Exercise \(\PageIndex{39}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-7} & {10} \\ {-10} & 9 \end{array} \right] {\bf y}}\)
Exercise \(\PageIndex{40}\)
\(\displaystyle{{\bf y}' = \left[ \begin{array} \\ {-7} & 6 \\ {-12} & 5 \end{array} \right] {\bf y}}\)
- Answer
-
\(\left|\begin{array}{cc}-7-\lambda&6\\-12&5-\lambda
\end{array}\right|=(\lambda+1)^2+36\).
The augmented matrix of \((A-(-1+6i)I){\bf x}={\bf 0}\) is
\(\left[\begin{array}{cccr}-6-6i&6&\vdots&0\\
-12&6-6i&\vdots&0 \end{array}\right]\),
which is row equivalent to
\(\left[\begin{array}{cccr} 1&-{1-i\over2}&\vdots&0\\ 0&0&\vdots&0
\end{array}\right]\).
Therefore,\(x_1=\displaystyle{1-i\over2}x_2\). Taking \(x_2=2\)
yields the eigenvector
\({\bf x}=\left[\begin{array}{c}1-i\\2\end{array}\right]\),
so \({\bf u}=\displaystyle{\left[\begin{array}{c}1\\2\end{array}\right]}\) and \({\bf v}=\displaystyle{\left[\begin{array}{c}{-1}\\0\end{array}\right]}\).
The quadratic equation is \(-k^2-4k+1=0\), with positive root
\(k\approx.2361\).
Routine calculations yield
\({\bf U}\approx\displaystyle{\left[\begin{array}{c}{.5257}\\{.8507}\end{array}\right]}\),
\({\bf V}\approx\displaystyle{\left[\begin{array}{c}{-.8507}\\{.5257}\end{array}\right]}\).