Skip to main content
Mathematics LibreTexts

3.8: Analyzing Arguments with Truth Tables

  • Page ID
    92648
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    Students will be able to:

    • Determine the validity of an argument using truth tables

    The validity of arguments also be determined using truth tables.

    Analyzing arguments using truth tables

    To analyze an argument with a truth table:

    1. Represent each of the premises symbolically.
    2. Create a conditional statement, joining all the premises to form the antecedent and using the conclusion as the consequent.
    3. Create a truth table for the statement. If it is always true, then the argument is valid.
    Example \(\PageIndex{6}\)

    Consider the argument

    Premise: If you bought bread, then you went to the store.

    Premise: You bought bread.

    Conclusion: You went to the store.

    Solution

    While this example is fairly obviously a valid argument, we can analyze it using a truth table by representing each of the premises symbolically. We can then form a conditional statement showing that the premises together imply the conclusion. If the truth table is a tautology (always true), then the argument is valid.

    We’ll let b represent “you bought bread” and s represent “you went to the store”. Then the argument becomes:

    Premise: b → s

    Premise: b

    Conclusion: s

    To test the validity, we look at whether the combination of both premises implies the conclusion; is it true that [(b → s) ⋀ b] → s ?

    Table \(\PageIndex{1}\)

    b

    s

    b → s

    T

    T

    T

    T

    F

    F

    F

    T

    T

    F

    F

    T

    Table \(\PageIndex{2}\)

    b

    s

    b → s

    (b → s) ⋀ b

    T

    T

    T

    T

    T

    F

    F

    F

    F

    T

    T

    F

    F

    F

    T

    F

    Table \(\PageIndex{3}\)

    b

    s

    b → s

    (b → s) ⋀ b

    [(b → s) ⋀ b] → s

    T

    T

    T

    T

    T

    T

    F

    F

    F

    T

    F

    T

    T

    F

    T

    F

    F

    T

    F

    T

    Since the truth table for [(b → s) ⋀ b] → s is always true, this is a valid argument.

    Example \(\PageIndex{7}\)

    Premise: If I go to the mall, then I’ll buy new jeans.

    Premise: If I buy new jeans, I’ll buy a shirt to go with it.

    Conclusion: If I go to the mall, I’ll buy a shirt.

    Solution

    Let m = I go to the mall, j = I buy jeans, and s = I buy a shirt.

    The premises and conclusion can be stated as:

    Premise: m → j

    Premise: j → s

    Conclusion: m → s

    We can construct a truth table for [(m → j) ⋀ (j → s)] → (m → s). Try to recreate each step and see how the truth table was constructed.

    Table \(\PageIndex{4}\)

    m

    j

    s

    m→j

    j→s

    (m→j) ⋀ (j→s)

    m→s

    [(m→j) ⋀ (j→s)] → (m→s)

    T

    T

    T

    T

    T

    T

    T

    T

    T

    T

    F

    T

    F

    F

    F

    T

    T

    F

    T

    F

    T

    F

    T

    T

    T

    F

    F

    F

    T

    F

    F

    T

    F

    T

    T

    T

    T

    T

    T

    T

    F

    T

    F

    T

    F

    F

    T

    T

    F

    F

    T

    T

    T

    T

    T

    T

    F

    F

    F

    T

    T

    T

    T

    T

    From the final column of the truth table, we can see this is a valid argument.

    Contributors and Attributions

    • Saburo Matsumoto
      CC-BY-4.0


    3.8: Analyzing Arguments with Truth Tables is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?