3.8: Analyzing Arguments with Truth Tables
- Page ID
- 92648
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Students will be able to:
- Determine the validity of an argument using truth tables
The validity of arguments also be determined using truth tables.
To analyze an argument with a truth table:
- Represent each of the premises symbolically.
- Create a conditional statement, joining all the premises to form the antecedent and using the conclusion as the consequent.
- Create a truth table for the statement. If it is always true, then the argument is valid.
Consider the argument
Premise: If you bought bread, then you went to the store.
Premise: You bought bread.
Conclusion: You went to the store.
Solution
While this example is fairly obviously a valid argument, we can analyze it using a truth table by representing each of the premises symbolically. We can then form a conditional statement showing that the premises together imply the conclusion. If the truth table is a tautology (always true), then the argument is valid.
We’ll let b represent “you bought bread” and s represent “you went to the store”. Then the argument becomes:
Premise: b → s
Premise: b
Conclusion: s
To test the validity, we look at whether the combination of both premises implies the conclusion; is it true that [(b → s) ⋀ b] → s ?
b |
s |
b → s |
---|---|---|
T |
T |
T |
T |
F |
F |
F |
T |
T |
F |
F |
T |
b |
s |
b → s |
(b → s) ⋀ b |
---|---|---|---|
T |
T |
T |
T |
T |
F |
F |
F |
F |
T |
T |
F |
F |
F |
T |
F |
b |
s |
b → s |
(b → s) ⋀ b |
[(b → s) ⋀ b] → s |
---|---|---|---|---|
T |
T |
T |
T |
T |
T |
F |
F |
F |
T |
F |
T |
T |
F |
T |
F |
F |
T |
F |
T |
Since the truth table for [(b → s) ⋀ b] → s is always true, this is a valid argument.
Premise: If I go to the mall, then I’ll buy new jeans.
Premise: If I buy new jeans, I’ll buy a shirt to go with it.
Conclusion: If I go to the mall, I’ll buy a shirt.
Solution
Let m = I go to the mall, j = I buy jeans, and s = I buy a shirt.
The premises and conclusion can be stated as:
Premise: m → j
Premise: j → s
Conclusion: m → s
We can construct a truth table for [(m → j) ⋀ (j → s)] → (m → s). Try to recreate each step and see how the truth table was constructed.
m |
j |
s |
m→j |
j→s |
(m→j) ⋀ (j→s) |
m→s |
[(m→j) ⋀ (j→s)] → (m→s) |
---|---|---|---|---|---|---|---|
T |
T |
T |
T |
T |
T |
T |
T |
T |
T |
F |
T |
F |
F |
F |
T |
T |
F |
T |
F |
T |
F |
T |
T |
T |
F |
F |
F |
T |
F |
F |
T |
F |
T |
T |
T |
T |
T |
T |
T |
F |
T |
F |
T |
F |
F |
T |
T |
F |
F |
T |
T |
T |
T |
T |
T |
F |
F |
F |
T |
T |
T |
T |
T |
From the final column of the truth table, we can see this is a valid argument.
Contributors and Attributions
Saburo Matsumoto
CC-BY-4.0