5.3E: Inverse Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

section 1.6 exercises

Assume that the function f is a one-to-one function.

1. If $$f(6)=7$$, find $$f^{-1} (7)$$

2. If $$f(3)=2$$, find $$f^{-1} (2)$$

3. If $$f^{-1} (-4)=-8$$, find $$f(-8)$$

4. If $$f^{-1} (-2)=-1$$, find $$f(-1)$$

5. If $$f(5)=2$$, find $$(f(5))^{-1}$$

6. If $$f(1)=4$$, find $$(f(1))^{-1}$$

7. Using the graph of $$f(x)$$ shown

a. Find $$f(0)$$

b. Solve $$f(x)=0$$

c. Find $$f^{-1} (0)$$

d. Solve $$f^{-1} (x)=0$$

8. Using the graph shown

a. Find $$g(1)$$

b. Solve $$g(x)=1$$

c. Find $$g^{-1} (1)$$

d. Solve $$g^{-1} (x)=1$$

9. Use the table below to find the indicated quantities.

 $$x$$ 0 1 2 3 4 5 6 7 8 9 $$f(x)$$ 8 0 7 4 2 6 5 3 9 1

a. Find $$f(1)$$

b. Solve $$f(x)=3$$

c. Find $$f^{-1}(0)$$

d. Solve $$f^{-1}(x)=7$$

10. Use the table below to fill in the missing values.

 $$t$$ 0 1 2 3 4 5 6 7 8 $$h(t)$$ 6 0 1 7 2 3 5 4 9

a. Find $$h(6)$$

b. Solve $$h(t)=0$$

c. Find $$h^{-1} (5)$$

d. Solve $$h^{-1} (t)=1$$

For each table below, create a table for $$f^{-1} (x).$$

11.

 $$x$$ 3 6 9 13 14 $$f(x)$$ 1 4 7 12 16

For each function below, find $$f^{-1} (x)$$

13. $$f(x)=x+3$$

14. $$f(x)=x+5$$

15. $$f(x)= 2 - x$$

16. $$f(x)=3-x$$

17. $$f(x)=11x+7$$

18. $$f(x)=9+10x$$

For each function, find a domain on which $$f$$ is one-to-one and non-decreasing, then find the inverse of $$f$$ restricted to that domain.

19. $$f(x)=(x +7)^{2}$$

20. $$f(x)=(x-6)^{2}$$

21. $$f(x)=x^{2} -5$$

22. $$f(x)=x^{2} +1$$

23. If $$f(x)=x^{3} -5$$ and $$g(x)=\sqrt[{3}]{x+5}$$, find

a. $$f(g(x))$$

b. $$g(f(x))$$

c. What does this tell us about the relationship between $$f(x)$$ and $$g(x)$$?

24. If $$f(x)=\dfrac{x}{2+x}$$ and $$g(x)=\dfrac{2x}{1-x}$$, find

a. $$f(g(x))$$

b. $$g(f(x))$$

c. What does this tell us about the relationship between $$f(x)$$ and $$g(x)$$?

1. 6

3. -4

5. 1/2

7a. 3
b. 2
c. 2
d. 2

11.

 $$x$$ 1 4 7 12 16 $$f^{-1}(x)$$ 3 6 9 13 14

13. $$f^{-1}(x) = x -3$$

15. $$f^{-1}(x) = -x + 2$$

17. $$f^{-1}(x) = \dfrac{x - 7}{11}$$

19. Restricted domain $$x \ge -7$$, $$f^{-1}(x) = \sqrt{x} - 7$$

21. Restricted domain $$x \ge 0$$, $$f^{-1}(x) = \sqrt{x + 5}$$

23a. $$f(g(x)) = (\sqrt[3]{x + 5})^3 - 5 = x$$
b. $$g(f(x)) = \sqrt[3]{x^3 - 5 + 5} = x$$
c. This means that they are inverse functions (of each other)

5.3E: Inverse Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.