Skip to main content
Mathematics LibreTexts

5.3E: Inverse Functions

  • Page ID
    145582
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    section 1.6 exercises

    Assume that the function f is a one-to-one function.

    1. If \(f(6)=7\), find \(f^{-1} (7)\)

    2. If \(f(3)=2\), find \(f^{-1} (2)\)

    3. If \(f^{-1} (-4)=-8\), find \(f(-8)\)

    4. If \(f^{-1} (-2)=-1\), find \(f(-1)\)

    5. If \(f(5)=2\), find \((f(5))^{-1}\)

    6. If \(f(1)=4\), find \((f(1))^{-1}\)

    7. Using the graph of \(f(x)\) shown

    屏幕快照 2019-06-17 下午5.06.51.png

    a. Find \(f(0)\)

    b. Solve \(f(x)=0\)

    c. Find \(f^{-1} (0)\)

    d. Solve \(f^{-1} (x)=0\)

    8. Using the graph shown

    屏幕快照 2019-06-17 下午5.08.02.png

    a. Find \(g(1)\)

    b. Solve \(g(x)=1\)

    c. Find \(g^{-1} (1)\)

    d. Solve \(g^{-1} (x)=1\)

    9. Use the table below to find the indicated quantities.

    \(x\) 0 1 2 3 4 5 6 7 8 9
    \(f(x)\) 8 0 7 4 2 6 5 3 9 1

    a. Find \(f(1)\)

    b. Solve \(f(x)=3\)

    c. Find \(f^{-1}(0)\)

    d. Solve \(f^{-1}(x)=7\)

    10. Use the table below to fill in the missing values.

    \(t\) 0 1 2 3 4 5 6 7 8
    \(h(t)\) 6 0 1 7 2 3 5 4 9

    a. Find \(h(6)\)

    b. Solve \(h(t)=0\)

    c. Find \(h^{-1} (5)\)

    d. Solve \(h^{-1} (t)=1\)

    For each table below, create a table for \(f^{-1} (x).\)

    11.

    \(x\) 3 6 9 13 14
    \(f(x)\) 1 4 7 12 16

    For each function below, find \(f^{-1} (x)\)

    13. \(f(x)=x+3\)

    14. \(f(x)=x+5\)

    15. \(f(x)= 2 - x\)

    16. \(f(x)=3-x\)

    17. \(f(x)=11x+7\)

    18. \(f(x)=9+10x\)

    For each function, find a domain on which \(f\) is one-to-one and non-decreasing, then find the inverse of \(f\) restricted to that domain.

    19. \(f(x)=(x +7)^{2}\)

    20. \(f(x)=(x-6)^{2}\)

    21. \(f(x)=x^{2} -5\)

    22. \(f(x)=x^{2} +1\)

    23. If \(f(x)=x^{3} -5\) and \(g(x)=\sqrt[{3}]{x+5}\), find

    a. \(f(g(x))\)

    b. \(g(f(x))\)

    c. What does this tell us about the relationship between \(f(x)\) and \(g(x)\)?

    24. If \(f(x)=\dfrac{x}{2+x}\) and \(g(x)=\dfrac{2x}{1-x}\), find

    a. \(f(g(x))\)

    b. \(g(f(x))\)

    c. What does this tell us about the relationship between \(f(x)\) and \(g(x)\)?

    Answer

    1. 6

    3. -4

    5. 1/2

    7a. 3
    b. 2
    c. 2
    d. 2

    11.

    \(x\) 1 4 7 12 16
    \(f^{-1}(x)\) 3 6 9 13 14

    13. \(f^{-1}(x) = x -3\)

    15. \(f^{-1}(x) = -x + 2\)

    17. \(f^{-1}(x) = \dfrac{x - 7}{11}\)

    19. Restricted domain \(x \ge -7\), \(f^{-1}(x) = \sqrt{x} - 7\)

    21. Restricted domain \(x \ge 0\), \(f^{-1}(x) = \sqrt{x + 5}\)

    23a. \(f(g(x)) = (\sqrt[3]{x + 5})^3 - 5 = x\)
    b. \(g(f(x)) = \sqrt[3]{x^3 - 5 + 5} = x\)
    c. This means that they are inverse functions (of each other)


    5.3E: Inverse Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?