# 7.3E: Inverse Trigonometric Functions (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Section 6.3 Exercises

1. $$\sin ^{-1} \left(\dfrac{\sqrt{2} }{2} \right)$$

2. $$\sin ^{-1} \left(\dfrac{\sqrt{3} }{2} \right)$$

3. $$\sin ^{-1} \left(-\dfrac{1}{2} \right)$$

4. $$\sin ^{-1} \left(-\dfrac{\sqrt{2} }{2} \right)$$

5. $$\cos ^{-1} \left(\dfrac{1}{2} \right)$$

6. $$\cos ^{-1} \left(\dfrac{\sqrt{2} }{2} \right)$$

7. $$\cos ^{-1} \left(-\dfrac{\sqrt{2} }{2} \right)$$

8. $$\cos ^{-1} \left(-\dfrac{\sqrt{3} }{2} \right)$$

9. $$\tan ^{-1} \left(1\right)$$

10. $$\tan ^{-1} \left(\sqrt{3} \right)$$

11. $$\tan ^{-1} \left(-\sqrt{3} \right)$$

12. $$\tan ^{-1} \left(-1\right)$$

13. $$\cos ^{-1} \left(-0.4\right)$$

14. $$\cos ^{-1} \left(0.8\right)$$

15. $$\sin ^{-1} \left(-0.8\right)$$

16. $$\tan ^{-1} \left(6\right)$$

Find the angle $$\theta$$ in degrees.

17. 18.

Evaluate the following expressions.

19. $$\sin ^{-1} \left(\cos \left(\dfrac{\pi }{4} \right)\right)$$

20. $$\cos ^{-1} \left(\sin \left(\dfrac{\pi }{6} \right)\right)$$

21. $$\sin ^{-1} \left(\cos \left(\dfrac{4\pi }{3} \right)\right)$$

22. $$\cos ^{-1} \left(\sin \left(\dfrac{5\pi }{4} \right)\right)$$

23. $$\cos \left(\sin ^{-1} \left(\dfrac{3}{7} \right)\right)$$

24. $$\sin \left(\cos ^{-1} \left(\dfrac{4}{9} \right)\right)$$

25. $$\cos \left(\tan ^{-1} \left(4\right)\right)$$

26. $$\tan \left(\sin ^{-1} \left(\dfrac{1}{3} \right)\right)$$

Find a simplified expression for each of the following.

27. $$\sin \left(\cos ^{-1} \left(\dfrac{x}{5} \right)\right)$$, for $$-5\le x\le 5$$

28. $$\tan \left(\cos ^{-1} \left(\dfrac{x}{2} \right)\right)$$, for $$-2\le x\le 2$$

29. $$\sin \left(\tan ^{-1} \left(3x\right)\right)$$

30. $$\cos \left(\tan ^{-1} \left(4x\right)\right)$$

1. $$\dfrac{\pi}{4}$$

3. $$-\dfrac{\pi}{6}$$

5. $$\dfrac{\pi}{3}$$

7. $$\dfrac{3\pi}{4}$$

9. $$\dfrac{\pi}{4}$$

11. $$-\dfrac{\pi}{3}$$

13. 1.9823

15. -0.9273

17. $$44.427^{\circ}$$

19. $$\dfrac{\pi}{4}$$

21. $$-\dfrac{\pi}{6}$$

23. $$\dfrac{2\sqrt{10}}{7}$$

25. $$\dfrac{1}{\sqrt{17}}$$

27. $$\dfrac{\sqrt{25-x^2}}{5}$$

29. $$\dfrac{3x}{\sqrt{9x^2 + 1}}$$

This page titled 7.3E: Inverse Trigonometric Functions (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.