Skip to main content
Mathematics LibreTexts

7.3E: Inverse Trigonometric Functions (Exercises)

  • Page ID
    145600
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Section 6.3 Exercises

    Evaluate the following expressions, giving the answer in radians.

    1. \(\sin ^{-1} \left(\dfrac{\sqrt{2} }{2} \right)\)

    2. \(\sin ^{-1} \left(\dfrac{\sqrt{3} }{2} \right)\)

    3. \(\sin ^{-1} \left(-\dfrac{1}{2} \right)\)

    4. \(\sin ^{-1} \left(-\dfrac{\sqrt{2} }{2} \right)\)

    5. \(\cos ^{-1} \left(\dfrac{1}{2} \right)\)

    6. \(\cos ^{-1} \left(\dfrac{\sqrt{2} }{2} \right)\)

    7. \(\cos ^{-1} \left(-\dfrac{\sqrt{2} }{2} \right)\)

    8. \(\cos ^{-1} \left(-\dfrac{\sqrt{3} }{2} \right)\)

    9. \(\tan ^{-1} \left(1\right)\)

    10. \(\tan ^{-1} \left(\sqrt{3} \right)\)

    11. \(\tan ^{-1} \left(-\sqrt{3} \right)\)

    12. \(\tan ^{-1} \left(-1\right)\)

    Use your calculator to evaluate each expression, giving the answer in radians.

    13. \(\cos ^{-1} \left(-0.4\right)\)

    14. \(\cos ^{-1} \left(0.8\right)\)

    15. \(\sin ^{-1} \left(-0.8\right)\)

    16. \(\tan ^{-1} \left(6\right)\)

    Find the angle \(\theta\) in degrees.

    17. 屏幕快照 2019-07-09 上午4.34.06.png18.屏幕快照 2019-07-09 上午4.34.22.png

    Evaluate the following expressions.

    19. \(\sin ^{-1} \left(\cos \left(\dfrac{\pi }{4} \right)\right)\)

    20. \(\cos ^{-1} \left(\sin \left(\dfrac{\pi }{6} \right)\right)\)

    21. \(\sin ^{-1} \left(\cos \left(\dfrac{4\pi }{3} \right)\right)\)

    22. \(\cos ^{-1} \left(\sin \left(\dfrac{5\pi }{4} \right)\right)\)

    23. \(\cos \left(\sin ^{-1} \left(\dfrac{3}{7} \right)\right)\)

    24. \(\sin \left(\cos ^{-1} \left(\dfrac{4}{9} \right)\right)\)

    25. \(\cos \left(\tan ^{-1} \left(4\right)\right)\)

    26. \(\tan \left(\sin ^{-1} \left(\dfrac{1}{3} \right)\right)\)

    Find a simplified expression for each of the following.

    27. \(\sin \left(\cos ^{-1} \left(\dfrac{x}{5} \right)\right)\), for \(-5\le x\le 5\)

    28. \(\tan \left(\cos ^{-1} \left(\dfrac{x}{2} \right)\right)\), for \(-2\le x\le 2\)

    29. \(\sin \left(\tan ^{-1} \left(3x\right)\right)\)

    30. \(\cos \left(\tan ^{-1} \left(4x\right)\right)\)

    Answer

    1. \(\dfrac{\pi}{4}\)

    3. \(-\dfrac{\pi}{6}\)

    5. \(\dfrac{\pi}{3}\)

    7. \(\dfrac{3\pi}{4}\)

    9. \(\dfrac{\pi}{4}\)

    11. \(-\dfrac{\pi}{3}\)

    13. 1.9823

    15. -0.9273

    17. \(44.427^{\circ}\)

    19. \(\dfrac{\pi}{4}\)

    21. \(-\dfrac{\pi}{6}\)

    23. \(\dfrac{2\sqrt{10}}{7}\)

    25. \(\dfrac{1}{\sqrt{17}}\)

    27. \(\dfrac{\sqrt{25-x^2}}{5}\)

    29. \(\dfrac{3x}{\sqrt{9x^2 + 1}}\)


    This page titled 7.3E: Inverse Trigonometric Functions (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.