Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

8.11.E: Problems on Radon-Nikodym Derivatives and Lebesgue Decomposition

  • Page ID
    32384
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    Fill in all proof details in Lemma 2 and Theorem 1.

    Exercise \(\PageIndex{2}\)

    Verify the statement following formula ( 3 ). Also prove the following:
    (i) If \(P \in \mathcal{M}\) along with \(-P \in \mathcal{M},\) then \(s \perp t\) implies \(t \perp s\);
    (ii) \(s \perp t\) iff \(v_{s} \perp t\).

    Exercise \(\PageIndex{3}\)

    Prove Corollary 1.
    [Hints: Here \(\mathcal{M}\) is a \(\sigma\)-ring. Suppose \(s\) and \(u\) reside in \(P^{\prime}\) and \(P^{\prime \prime},\) respectively, and \(v_{t} P^{\prime}=0=v_{t} P^{\prime \prime} .\) Let \(P=P^{\prime} \cup P^{\prime \prime} \in \mathcal{M} .\) Verify that \(v_{t} P=0\) (use Problem 8 in Chapter \(7, §11 \text { ). Then show that both } s \text { and } u \text { reside in } P .]\)

    Exercise \(\PageIndex{4}\)

    Show that if \(s: \mathcal{M} \rightarrow E^{*}\) is a signed measure in \(S \in \mathcal{M},\) then \(s^{+} \perp s^{-}\) and \(s^{-} \perp s^{+}\).

    Exercise \(\PageIndex{5}\)

    Fill in all details in the proof of Theorem \(2 .\) Also prove the following:
    (i) \(s^{\prime}\) and \(v_{s^{\prime}}\) are absolutely \(t\)-continuous.
    [Hint: Use Theorem 2 in Chapter 7, §11.]
    (ii) \(v_{s}=v_{s^{\prime}}+v_{s^{\prime \prime}}, v_{s^{\prime \prime}} \perp t\).
    (iii) If \(s\) is a measure \((\geq 0),\) so are \(s^{\prime}\) and \(s^{\prime \prime}\).

    Exercise \(\PageIndex{6}\)

    Verify Note 3 for Theorem 1 and Corollary \(3 .\) State and prove both generalized propositions precisely.

    • Was this article helpful?