Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

8.7.E: Problems on Integration of Complex and Vector-Valued Functions

  • Page ID
    32376
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    Prove Corollary \(1(\text { iii })-\) (vii) in §4 componentwise for integrable maps \(f: S \rightarrow E^{n}\left(C^{n}\right) .\)

    Exercise \(\PageIndex{2}\)

    Prove Theorems 2 and 3 componentwise for \(E=E^{n}\left(C^{n}\right)\).

    Exercise \(\PageIndex{2'}\)

    Do it for Corollary 3 in §6.

    Exercise \(\PageIndex{3}\)

    Prove Theorem 1 with
    \[
    \int_{A}|f|<\infty
    \]
    replaced by
    \[
    \int_{A}\left|f_{k}\right|<\infty, \quad k=1, \ldots, n .
    \]

    Exercise \(\PageIndex{4}\)

    Prove that if \(f: S \rightarrow E^{n}\left(C^{n}\right)\) is integrable on \(A,\) so is \(|f| .\) Disprove the converse.

    Exercise \(\PageIndex{5}\)

    Disprove Lemma 1 for \(m A=\infty\).

    Exercise \(\PageIndex{*6}\)

    Complete the proof of Lemma 3.

    Exercise \(\PageIndex{*7}\)

    Complete the proof of Theorem 3.

    Exercise \(\PageIndex{*8}\)

    Do Problem 1 and \(2^{\prime}\) for \(f: S \rightarrow E\).

    Exercise \(\PageIndex{*9}\)

    Prove formula (1) from definitions of Part II of this section.

    Exercise \(\PageIndex{10}\)

    \(\Rightarrow 10\). Show that
    \[
    \left|\int_{A} f\right| \leq \int_{A}|f|
    \]
    for integrable maps \(f: S \rightarrow E .\) See also Problem 14.
    [Hint: If \(m A<\infty,\) use Corollary \(1(\text { ii ) of } §4 \text { and Lemma } 1 . \text { If } m A=\infty,\) us imitate" the proof of Lemma \(3 .\) ]

    Exercise \(\PageIndex{11}\)

    Do Problem 11 in §6 for \(f_{n}: S \rightarrow E .\) Do it componentwise for \(E=\) \(E^{n}\left(C^{n}\right) .\)

    Exercise \(\PageIndex{12}\)

    Show that if \(f, g: S \rightarrow E^{1}(C)\) are integrable on \(A,\) then
    \[
    \left|\int_{A} f g\right|^{2} \leq \int_{A}|f|^{2} \cdot \int_{A}|g|^{2} .
    \]
    In what case does equality hold? Deduce Theorem \(4\left(\mathrm{c}^{\prime}\right)\) in Chapter \(3,\) §§1-3, from this result.
    [Hint: Argue as in that theorem. Consider the case
    \[
    \left.\left(\exists t \in E^{1}\right) \quad \int_{A}|f-t g|=0 .\right]
    \]

    Exercise \(\PageIndex{13}\)

    Show that if \(f: S \rightarrow E^{1}(C)\) is integrable on \(A\) and
    \[
    \left|\int_{A} f\right|=\int_{A}|f| ,
    \]
    then
    \[
    (\exists c \in C) \quad c f=|f| \quad \text { a.e. on } A.
    \]
    [Hint: Let \(a=\int_{A} f .\) The case \(a=0\) is trivial. If \(a \neq 0,\) let
    \[
    c=\frac{|a|}{a} ;|c|=1 ; c a=|a| .
    \]
    Let \(r=(c f)_{\mathrm{re}} .\) Show that \(r \leq|c f|=|f|\),
    \[
    \begin{aligned}\left|\int_{A} f\right| &=\int_{A} c f=\int_{A} r \leq \int_{A}|f|=\left|\int_{A} f\right| , \\ & \int_{A}|f|=\int_{A} r=\int_{A} (c f)_{\mathrm{re,}} \end{aligned}
    \]
    \(\left.(c f)_{\mathrm{re}}=|c f|(\mathrm{a.e.}), \text { and } c f=|c f|=|f| \text { a.e. on } A .\right]\)

    Exercise \(\PageIndex{14}\)

    Do Problem 10 for \(E=C\) using the method of Problem \(13 .\)

    Exercise \(\PageIndex{15}\)

    Show that if \(f: S \rightarrow E\) is integrable on \(A,\) it is integrable on each \(\mathcal{M}\)-set \(B \subseteq A .\) If, in addition,
    \[
    \int_{B} f=0
    \]
    for all such \(B,\) show that \(f=0\) a.e. on \(A .\) Prove it for \(E=E^{n}\) first.
    [Hint for \(\left.E=E^{*}: A=A(f>0) \cup A(f \leq 0) . \text { Use Theorems } 1(\mathrm{h}) \text { and } 2 \text { from } §5 .\right]\)

    Exercise \(\PageIndex{16}\)

    In Problem \(15,\) show that
    \[
    s=\int f
    \]
    is a \(\sigma\)-additive set function on
    \[
    \mathcal{M}_{A}=\{X \in \mathcal{M} | X \subseteq A\} .
    \]
    (Note \(4 \text { in } §5) ; s\) is called the indefinite integral of \(f\) in \(A .\)

    • Was this article helpful?