1.3.2.1: Exercises
- Page ID
- 82830
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Section 1.3.2.1 Exercises
- Which is larger: \(\dfrac{2}{3} \) or \( \dfrac{5}{8} \)? Which one would be on the right if they were graphed on a number line?
- Write the fractions in order from smallest to largest.
- \(\dfrac{3}{4}, \dfrac{5}{8}, \dfrac{2}{3}, \dfrac{7}{6}, \dfrac{2}{5}\)
- Simplify each fraction by putting it in lowest terms.
- \(\dfrac{15}{35}
- \(\dfrac{56}{21}
- \(\dfrac{9}{20}
- You survey students in your class and find that 8 students are left-handed and 28 are not. Write the ratio of left-handed students to all students as a fraction in simplest form.
- Evaluate:
- \(\dfrac{4}{9} +\dfrac{1}{3}\)
- \(\dfrac{3}{10} +\dfrac{5}{12}+\dfrac{1}{6}\)
- \(\dfrac{7}{12} -\dfrac{9}{16}\)
- \(8 -\dfrac{5}{7}\)
- \(\dfrac{7}{8} -\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{1}{2}\)
- Evaluate:
- \(\left(\dfrac{3}{6}\right)\cdot \left( 4\dfrac{5}{8}\right) \cdot \left(\dfrac{2}{15}\right)\)
- \( \left( \dfrac{5}{6}\right)^2\)
- \(6 \cdot 4\dfrac{2}{3} \)
- \( \left(12\cdot \dfrac{3}{4}\right) +\left( 15\cdot \dfrac{1}{5}\right)\)
- \( \left(\dfrac{1}{2} \right)^2\cdot \left( \dfrac{5}{3}\right)^2 \)
- \( \dfrac{1}{3}\div \dfrac{1}{2}\)
- \( \dfrac{13}{28}\div \dfrac{39}{14}\)
- \( \dfrac{4}{3}\div 6\)
- \( 4+\dfrac{3}{8}\div\dfrac{3}{16}\)
- Rewrite as rational numbers in fraction form.
- \(2 \dfrac{3}{8}\)
- \( 1\dfrac{1}{5}\)
- \(-4 \dfrac{2}{7}\)
- \( 5\dfrac{47}{100}\)
- Write each rational number as a mixed number.
- \( \dfrac{5}{3}\)
- \( -\dfrac{8}{5}\)
- \( \dfrac{43}{10}\)
- \( \dfrac{16}{3}\)
- \( \dfrac{38}{6}\)
- True or False.
- \(\sqrt{9}+\sqrt{16}=\sqrt{9+16} \)
- \(\sqrt{9\cdot 16}=\sqrt{9}\sqrt{6} \)
- \( \sqrt{\left( \dfrac{9}{16}\right)}=\dfrac{\sqrt{9}}{\sqrt{16}}\)
- Simplify each expression. Leave irrational numbers in exact form; do not approximate them.
- \(6\sqrt{3}+4\sqrt{3} \)
- \(2(6\sqrt{3}+4\sqrt{3}) \)
- \( \dfrac{6\sqrt{3}+4\sqrt{3}}{2\sqrt{3}}\)
- \( 2\sqrt{3}\cdot\sqrt{3}\)
- \( 2\sqrt{3} (6\sqrt{3}+4\sqrt{3}) \)
- \( 4\sqrt{3}^2\)
- \( (4\sqrt{3})^2\)
- \( 5\pi+4\pi\)
- \( \dfrac{12\pi}{4\pi} \)
- \(2(5\pi+4\pi) \)
- \( 2\cdot 5\pi^2\)
- \(2\cdot(5\pi)^2 \)
- \( (2\cdot 5\pi)^2 \)
- \( 2\pi \cdot 5^2\)
- Compare the two numbers in each pair using the correct inequality symbol.
- -6 ____ -2
- -5 ____ -9
- -7 ____ 2
- -3/5 ____ -4/7
- -2.56 ____ - 3.4
- Evaluate these expressions
- -5/7 + 2/7
- 4.79 – 8.39
- -64 – 25.5
- 23 1/3 - 52 2/3
- 6/5 ÷ 3/8
- 4 2/5 - 2 7/8
- 3 1/2 • 4 1/3
- How many quarter-pound burgers can you make from 7 ½ pounds of hamburger meat?
- In a recent election on campus, 760 students voted. The winning candidate received 4/7 of the votes cast. How many students voted for this candidate?
- Evaluate 48 – 2.8x for x = 10
- Evaluate 1/2 h(b + B) for h = 3/2 , b = 4 ½ , B = 6
- Write these rational numbers as decimal numbers.
- \( \dfrac{2}{5} \)
- \( \dfrac{3}{5} \)
- \( \dfrac{7}{20} \)
- \( \dfrac{7}{8} \)
- \( \dfrac{17}{100} \)
- \( \dfrac{5}{10} \)
- \( \dfrac{13}{400} \)
- \( \dfrac{1}{3} \)
- \( \dfrac{5}{6} \)
- \( \dfrac{4}{7} \)
- \( \dfrac{8}{5} \)
- \( \dfrac{5}{4} \)
- 5
- \( \dfrac{8}{3} \)
- Rewrite these decimal numbers as rational numbers in lowest terms.
- 0.6
- 0.48
- 0.028
- 0.89
- \(0.\bar{6}\)
- 2.5
- 12.25